Analysis of phospholipase A2, l-amino acid oxidase, and proteinase enzymatic activities of the Lachesis muta rhombeata venom

2012 ◽  
Vol 26 (8) ◽  
pp. 308-314 ◽  
Author(s):  
Lucas Benício Campos ◽  
Manuela Berto Pucca ◽  
Eduardo Crosara Roncolato ◽  
Joaquim Coutinho Netto ◽  
José Elpidio Barbosa
Toxicon ◽  
2012 ◽  
Vol 60 (7) ◽  
pp. 1263-1276 ◽  
Author(s):  
Cristiane Bregge-Silva ◽  
Maria Cristina Nonato ◽  
Sérgio de Albuquerque ◽  
Paulo Lee Ho ◽  
Inácio L.M. Junqueira de Azevedo ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mauro Valentino Paloschi ◽  
Jéssica Amaral Lopes ◽  
Charles Nunes Boeno ◽  
Milena Daniela Souza Silva ◽  
Jaína Rodrigues Evangelista ◽  
...  

Toxicon ◽  
2010 ◽  
Vol 55 (4) ◽  
pp. 795-804 ◽  
Author(s):  
Alba Fabiola Costa Torres ◽  
Rodrigo Tavares Dantas ◽  
Marcos H. Toyama ◽  
Eduardo Diz Filho ◽  
Fernando José Zara ◽  
...  

2020 ◽  
Vol 48 (2) ◽  
pp. 719-731 ◽  
Author(s):  
Jia Jin Hiu ◽  
Michelle Khai Khun Yap

The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.


2014 ◽  
Vol 70 (11) ◽  
pp. 1556-1559 ◽  
Author(s):  
Anwar Ullah ◽  
Rehana Masood ◽  
Patrick Jack Spencer ◽  
Mário Tyago Murakami ◽  
Raghuvir Krishnaswamy Arni

Snake-venom proteins form multi-component defence systems by the recruitment and rapid evolution of nonvenomous proteins and hence serve as model systems to understand the structural modifications that result in toxicity. L-Amino-acid oxidases (LAAOs) are encountered in a number of snake venoms and have been implicated in the inhibition of platelet aggregation, cytotoxicity, haemolysis, apoptosis and haemorrhage. An L-amino-acid oxidase fromLachesis mutavenom has been purified and crystallized. The crystals belonged to space groupP21, with unit-cell parametersa= 66.05,b= 79.41,c= 100.52 Å, β = 96.55°. The asymmetric unit contained two molecules and the structure has been determined and partially refined at 3.0 Å resolution.


1996 ◽  
Vol 76 (06) ◽  
pp. 0993-0997
Author(s):  
Zhao-Yan Li ◽  
Xiao-Wei Wu ◽  
Tie-Fu Yu ◽  
Eric C-Y Lian

SummaryBy means of CM-Sephadex C-25, DEAE-Sephadex A-50, Sephadex G-200, and Sephadex G-75 chromatographies, a lupus anticoagulant like protein (LALP) from Agkistrodon halys brevicaudus was purified. On SDS-PAGE, the purified LALP had a molecular weight of 25,500 daltons under non-reducing condition and 15,000 daltons under reducing condition. The isoelectric point was pH 5.6. Its N terminal amino acid sequencing revealed a mixture of 2 sequences: DCP(P/S)(D/G)WSSYEGH(C/R)Q(Q/K). It was devoid of phospho-lipaseA, fibrino(geno)lytic, 5′-nucleotidase, L-amino acid oxidase, phosphomonoesterase, phosphodiesterase and thrombin-like activities, which were found in crude venom. In the presence of LALP, PT, aPTT, and dRVVT of human plasma were markedly prolonged and its effects were concentration-dependent but time-independent. The inhibitory effect of LALP on the plasma clotting time was enhanced by decreasing phospholipid concentration in TTI test. The individual clotting factor activity was not affected by LALP when higher dilutions of LALP-plasma mixture were used for assay. Russell’s viper venom time was shortened when high phospholipid confirmatory reagent was used. Therefore, the protein has lupus anticoagulant property.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


Author(s):  
Hong Wei ◽  
Zuyue Chen ◽  
Ari Koivisto ◽  
Antti Pertovaara

Abstract Background Earlier studies show that endogenous sphingolipids can induce pain hypersensitivity, activation of spinal astrocytes, release of proinflammatory cytokines and activation of TRPM3 channel. Here we studied whether the development of pain hypersensitivity induced by sphingolipids in the spinal cord can be prevented by pharmacological inhibition of potential downstream mechanisms that we hypothesized to include TRPM3, σ1 and NMDA receptors, gap junctions and D-amino acid oxidase. Methods Experiments were performed in adult male rats with a chronic intrathecal catheter for spinal drug administrations. Mechanical nociception was assessed with monofilaments and heat nociception with radiant heat. N,N-dimethylsphingosine (DMS) was administered to induce pain hypersensitivity. Ononetin, isosakuranetin, naringenin (TRPM3 antagonists), BD-1047 (σ1 receptor antagonist), carbenoxolone (a gap junction decoupler), MK-801 (NMDA receptor antagonist) and AS-057278 (inhibitor of D-amino acid oxidase, DAAO) were used to prevent the DMS-induced hypersensitivity, and pregnenolone sulphate (TRPM3 agonist) to recapitulate hypersensitivity. Results DMS alone produced within 15 min a dose-related mechanical hypersensitivity that lasted at least 24 h, without effect on heat nociception. Preemptive treatments with ononetin, isosakuranetin, naringenin, BD-1047, carbenoxolone, MK-801 or AS-057278 attenuated the development of the DMS-induced hypersensitivity, but had no effects when administered alone. Pregnenolone sulphate (TRPM3 agonist) alone induced a dose-related mechanical hypersensitivity that was prevented by ononetin, isosakuranetin and naringenin. Conclusions Among spinal pronociceptive mechanisms activated by DMS are TRPM3, gap junction coupling, the σ1 and NMDA receptors, and DAAO.


Sign in / Sign up

Export Citation Format

Share Document