Genetic interaction between F‐box motif encoding YDR131C and retrograde signaling‐related RTG1 regulates the stress response and apoptosis in Saccharomyces cerevisiae

Author(s):  
Heena Shoket ◽  
Monika Pandita ◽  
Meenu Sharma ◽  
Ravinder Kumar ◽  
Ayushi Rakwal ◽  
...  
2019 ◽  
Author(s):  
Meenu Sharma ◽  
V. Verma ◽  
Narendra K Bairwa

AbstractStress response is mediated by transcription of stress responsive genes. F-box motif protein Saf1 involves in SCF-E3 ligase mediated degradation of the adenine deaminase, Aah1 upon nutrient stress. Four transcription regulators, BUR6, MED6, SPT10, SUA7, have been reported for SAF1 gene in genome database of Saccharomyces cerevisiae. Here in this study an in-silco analysis of gene expression and transcription factor databases was carried out to understand the regulation of SAF1 gene expression during stress for hypothesis generation and experimental analysis. The GEO profile database analysis showed increased expression of SAF1 gene when treated with clioquinol, pterostilbene, gentamicin, hypoxia, genotoxic, desiccation, and heat stress, in WT cells. SAF1 gene expression in stress conditions correlated positively whereas AAH1 expression negatively with RLM1 transcription factor, which was not reported earlier. Based on analysis of expression profile and regulatory association of SAF1 and RLM1, we hypothesized that inactivation of both the genes may contribute to stress tolerance. The experimental analysis with the double mutant, saf1Δrlm1Δ for cellular growth response to stress causing agents, showed tolerance to calcofluor white, SDS, and hydrogen peroxide. On the contrary, saf1Δrlm1Δ showed sensitivity to MMS, HU, DMSO, Nocodazole, Benomyl stress. Based on in-silico and experimental data we suggest that SAF1 and RLM1 both interact genetically in differential response to genotoxic and general stressors.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Meenu Sharma ◽  
V. Verma ◽  
Narendra K. Bairwa

Abstract Background Stress response is mediated by the transcription of stress-responsive genes. The F-box motif protein Saf1p is involved in SCF-E3 ligase mediated degradation of the adenine deaminase, Aah1p upon nutrient stress. The four transcription regulators, BUR6, MED6, SPT10, SUA7, are listed for SAF1 in the genome database of Saccharomyces cerevisiae. Here in this study, we carried out an in-silico analysis of gene expression and transcription factor databases to understand the regulation of SAF1 expression during stress for hypothesis and experimental analysis. Result An analysis of the GEO profile database indicated an increase in SAF1 expression when cells were treated with stress agents such as Clioquinol, Pterostilbene, Gentamicin, Hypoxia, Genotoxic, desiccation, and heat. The increase in expression of SAF1 during stress conditions correlated positively with the expression of RLM1, encoding the Rlm1p transcription factor. The expression of AAH1 encoding Aah1p, a Saf1p substrate for ubiquitination, appeared to be negatively correlated with the expression of RLM1 as revealed by an analysis of the Yeastract expression database. Based on analysis of expression profile and regulatory association of SAF1 and RLM1, we hypothesized that inactivation of both the genes together may contribute to stress tolerance. The experimental analysis of cellular growth response of cells lacking both SAF1 and RLM1 to selected stress agents such as cell wall and osmo-stressors, by spot assay indicated stress tolerance phenotype similar to parental strain however sensitivity to genotoxic and microtubule depolymerizing stress agents. Conclusions Based on in-silico and experimental data we suggest that SAF1 and RLM1 both interact genetically in differential response to genotoxic and general stressors.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1261-1272 ◽  
Author(s):  
Laura Salem ◽  
Natalie Walter ◽  
Robert Malone

Abstract REC104 is a gene required for the initiation of meiotic recombination in Saccharomyces cerevisiae. To better understand the role of REC104 in meiosis, we used an in vitro mutagenesis technique to create a set of temperature-conditional mutations in REC104 and used one ts allele (rec104-8) in a screen for highcopy suppressors. An increased dosage of the early exchange gene REC102 was found to suppress the conditional recombinational reduction in rec104-8 as well as in several other conditional rec104 alleles. However, no suppression was observed for a null allele of REC104, indicating that the suppression by REC102 is not “bypass” suppression. Overexpression of the early meiotic genes REC114, RAD50, HOP1, and RED1 fails to suppress any of the rec104 conditional alleles, indicating that the suppression might be specific to REC102.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 487
Author(s):  
Alexander Tomashevsky ◽  
Ekaterina Kulakovskaya ◽  
Ludmila Trilisenko ◽  
Ivan V. Kulakovskiy ◽  
Tatiana Kulakovskaya ◽  
...  

Inorganic polyphosphate (polyP) is an important factor of alkaline, heavy metal, and oxidative stress resistance in microbial cells. In yeast, polyP is synthesized by Vtc4, a subunit of the vacuole transporter chaperone complex. Here, we report reduced but reliably detectable amounts of acid-soluble and acid-insoluble polyPs in the Δvtc4 strain of Saccharomyces cerevisiae, reaching 10% and 20% of the respective levels of the wild-type strain. The Δvtc4 strain has decreased resistance to alkaline stress but, unexpectedly, increased resistance to oxidation and heavy metal excess. We suggest that increased resistance is achieved through elevated expression of DDR2, which is implicated in stress response, and reduced expression of PHO84 encoding a phosphate and divalent metal transporter. The decreased Mg2+-dependent phosphate accumulation in Δvtc4 cells is consistent with reduced expression of PHO84. We discuss a possible role that polyP level plays in cellular signaling of stress response mobilization in yeast.


2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


1993 ◽  
Vol 13 (1) ◽  
pp. 248-256
Author(s):  
N Kobayashi ◽  
K McEntee

The stress-responsive DDR2 gene (previously called DDRA2) of Saccharomyces cerevisiae is transcribed at elevated levels following stress caused by heat shock or DNA damage. Previously, we identified a 51-bp promoter fragment, oligo31/32, which conferred heat shock inducibility on the heterologous CYC1-lacZ reporter gene in S. cerevisiae (N. Kobayashi and K. McEntee, Proc. Natl. Acad. Sci. USA 87:6550-6554, 1990). Using a series of synthetic oligonucleotides, we have identified a pentanucleotide, CCCCT (C4T), as an essential component of this stress response sequence. This element is not a binding site for the well-characterized heat shock transcription factor which recognizes a distinct cis-acting heat shock element in the promoters of many heat shock genes. Here we demonstrate the ability of oligonucleotides containing the C4T sequence to confer heat shock inducibility on the reporter gene and show that the presence of two such elements produces more than additive effects on induction. Gel retardation experiments have been used to demonstrate specific complex formation between C4T-containing fragments and one or more yeast proteins. Formation of these complexes was not competed by fragments containing mutations in the C4T sequence nor by heat shock element-containing competitor DNAs. Fragments containing the C4T element bound to a single 140-kDa polypeptide, distinct from heat shock transcription factors in yeast crude extracts. These experiments identify key cis- and trans-acting components of a novel heat shock stress response pathway in S. cerevisiae.


2010 ◽  
Vol 285 (2) ◽  
pp. 125-149 ◽  
Author(s):  
Manuel J. Villa-García ◽  
Myung Sun Choi ◽  
Flora I. Hinz ◽  
María L. Gaspar ◽  
Stephen A. Jesch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document