The effect of pH on incorporation of galactose by a normal human cell line and cell lines from patients with defective galactose metabolism

1976 ◽  
Vol 87 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Helene Z. Hill
2019 ◽  
Vol 57 (3) ◽  
pp. 300
Author(s):  
Polimati Haritha ◽  
Sunil Kumar Patnaik ◽  
Vinay Bharadwaj Tatipamula

The chemical examination of ethanolic extract of manglicolous lichen Graphis ajarekarii (Ga-Et) resulted in isolation of three known metabolites – chiodectonic acid (1), graphenone (2) and graphisquinone (3). All the isolates (1-3) and Ga-Et were screened against DPPH and superoxide free radicals, six different cancer cell lines and one normal human cell line (NHME). This work is the first report of antioxidant and cytotoxicity studies on the isolated metabolites (1-3).


2000 ◽  
Vol 74 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Carolyn A. Wilson ◽  
Susan Wong ◽  
Matthew VanBrocklin ◽  
Mark J. Federspiel

ABSTRACT We previously reported that mitogenic activation of porcine peripheral blood mononuclear cells resulted in production of porcine endogenous retrovirus(es) (PERV[s]) capable of productively infecting human cells (C. Wilson et al., J. Virol. 72:3082–3087, 1998). We now extend that analysis to show that additional passage of isolated virus, named here PERV-NIH, through a human cell line yielded a viral population with a higher titer of infectious virus on human cells than the initial isolate. We show that in a single additional passage on a human cell line, the increase in infectivity for human cells is accounted for by selection against variants carrying pig-tropic envelope sequences (PERV-C) as well as by enrichment for replication-competent genomes. Sequence analysis of the envelope cDNA present in virions demonstrated that the envelope sequence of PERV-NIH is related to but distinct from previously reported PERV envelopes. The in vitro host range of PERV was studied in human primary cells and cell lines, as well as in cell lines from nonhuman primate and other species. This analysis reveals three patterns of susceptibility to infection among these host cells: (i) cells are resistant to infection in our assay; (ii) cells are infected by virus, as viral RNA is detected in the supernatant by reverse transcription-PCR, but the cells are not permissive to productive replication and spread; and (iii) cells are permissive to low-level productive replication. Certain cell lines were permissive for efficient productive infection and spread. These results may prove useful in designing appropriate animal models to assess the in vivo infectivity properties of PERV.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5271-5271
Author(s):  
Hilmar Quentmeier ◽  
Claudia Pommerenke ◽  
Hans G. Drexler

Abstract The NCI-60 human cell line panel, developed for use in drug development comprises sixty human cancer cell lines derived from nine different tissues. Only six cell lines of the NCI-60 were derived from blood cancers. Therefore, most forms and subtypes of leukemia and lymphoma are not represented in the NCI-60 panel. To respond to this apparent gap, we suggest the novel LL-100 panel, 100 leukemia and lymphoma cell lines representing the major leukemia/lymphoma entities, for basic research and drug development. Whole exome sequencing and RNA sequencing were performed to identify mutations in 100 cell lines. Here we list the 100 cell lines, ordered by subtype and show mutations in epigenetic modifier genes. We found cell lines with mutations in ASXL1, EZH2, IDH1, TET2 and in DNMT3A. Hitherto, cell line OCI-AML3 was the only human cell line described with a DNMT3A mutation. Twenty-two percent of patients with acute myeloid leukemia contain DNMT3A mutations and the median overall survival with DNMT3A mutations is shorter than without. Most DNMT3A mutations are heterozygous and alter amino acid R882, R882H being the most common DNMT3A mutation in AML. Exogenously mutant murine R878H (equivalent to human R882H) inhibits DNMT3A activity in a dominant negative manner. We describe here that the AML cell line SET-2 carries a heterozygous G to A transition at chr2_25234373 (hg38) which leads to the DNMT3A R882H amino acid substitution. Chip-based methylation analysis revealed that the described DNMT3A targets IRF8, KLF2, HOXA11 and HOXB2 are hypomethylated in cell lines OCI-AML3 (DNMT3A R882C) and in SET-2 (DNMT3A R882H). These data suggest that SET-2 is a novel model cell line for functional analysis of the DNMT3A R882 mutation and a first gain in knowledge through data mining the LL-100 panel. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document