Evidence that modulation of glucose transporter intrinsic activity is the mechanism involved in the allose-mediated depression of hexose transport in mammalian cells

1994 ◽  
Vol 161 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Susan E. Pratt ◽  
Susan Colby-Germinario ◽  
Susannia Manuel ◽  
Ralph J. Germinario
1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


1994 ◽  
Vol 196 (1) ◽  
pp. 93-108
Author(s):  
D K Kakuda ◽  
C L MacLeod

Recent advances have made possible the isolation of the genes and their cDNAs encoding Na(+)-independent amino acid transporters. Two classes of amino acid 'uniporters' have been isolated. One class contains the mCAT (murine cationic amino acid transporter) gene family that encodes proteins predicted to span the membrane 12-14 times and exhibits structural properties similar to the GLUT (glucose transporter) family and to other well-known transporters. The other class consists of two known genes, rBAT (related to B system amino acid transporters) and 4F2hc, that share amino acid sequence similarity with alpha-amylases and alpha-glucosidases. They are type II glycoproteins predicted to span the membrane only once, yet they mediate the Na(+)-independent transport of cationic and zwitterionic amino acids in Xenopus oocytes. Mutations in the human rBAT gene have been identified by Palacín and his co-workers in several families suffering from a heritable form of cystinuria. This important finding clearly establishes a key role for rBAT in cystine transport. The two classes of amino acid transporters are compared with the well-studied GLUT family of Na(+)-independent glucose transporters.


Biochemistry ◽  
1995 ◽  
Vol 34 (2) ◽  
pp. 535-544 ◽  
Author(s):  
Robert A. Honkanen ◽  
Heather McBath ◽  
Christopher Kushmerick ◽  
Gordon E. Callender ◽  
Suzanne F. Scarlata ◽  
...  

1987 ◽  
Vol 112 (3) ◽  
pp. 375-378 ◽  
Author(s):  
J. Kawada ◽  
M. Okita ◽  
M. Nishida ◽  
Y. Yoshimura ◽  
K. Toyooka ◽  
...  

ABSTRACT Ethylidene glucose (4,6-O-ethylidene glucose; EG) is known to bind the outer surface of the glucose transporter in the membranes of human erythrocytes and other mammalian cells. If a glucose transport system is present on pancreatic β cells and recognizes the glucose moiety of streptozotocin (STZ), EG should protect β cells from the cytotoxicity of STZ when it is administered with STZ. This possibility was examined in in-vivo experiments in rats. When EG and STZ were injected into rats together the animals did not become diabetic, as judged by (1) their blood glucose levels, (2) response in a glucose-tolerance test, and (3) insulin secretion in response to feeding. These results suggest that there is a glucose transporter present in β cells and also the transport of streptozotocin into β cells through this system. J. Endocr. (1987) 112, 375–378


1996 ◽  
Vol 314 (2) ◽  
pp. 485-490 ◽  
Author(s):  
Yasutake SHIMIZU ◽  
Danuta KIELAR ◽  
Yasuhiko MINOKOSHI ◽  
Takashi SHIMAZU

Glucose uptake into brown adipose tissue has been shown to be enhanced directly by noradrenaline (norepinephrine) released from sympathetic nerves. In this study we characterized the glucose transport system in cultured brown adipocytes, which responds to noradrenaline as well as insulin, and analysed the mechanism underlying the noradrenaline-induced increase in glucose transport. Insulin increased 2-deoxyglucose (dGlc) uptake progressively at concentrations from 10-11 to 10-6 M, with maximal stimulation at 10-7 M. Noradrenaline concentrations ranging from 10-8 to 10-6 M also enhanced dGlc uptake, even in the absence of insulin. The effects of noradrenaline and insulin on dGlc uptake were additive. The stimulatory effect of noradrenaline was mimicked by the β3-adrenergic agonist, BRL37344, at concentrations two orders lower than noradrenaline. Dibutyryl cyclic AMP also mimicked the stimulatory effect of noradrenaline, and the antagonist of cyclic AMP, cyclic AMP-S Rp-isomer, blocked the enhancement of glucose uptake due to noradrenaline. Furthermore Western blot analysis with an anti-phosphotyrosine antibody revealed that, in contrast with insulin, noradrenaline apparently does not stimulate intracellular phosphorylation of tyrosine, suggesting that the noradrenaline-induced increase in dGlc uptake depends on elevation of the intracellular cyclic AMP level and not on the signal chain common to insulin. When cells were incubated with insulin, the content of the muscle/adipocyte type of glucose transporter (GLUT4) in the plasma membrane increased, with a corresponding decrease in the amount in the microsomal membrane. In contrast, noradrenaline did not affect the subcellular distribution of GLUT4 or that of the HepG2/erythrocyte type of glucose transporter. Although insulin increased Vmax. and decreased the Km value for glucose uptake, the effect of noradrenaline was restricted to a pronounced decrease in Km. These results suggest that the mechanism by which noradrenaline stimulates glucose transport into brown adipocytes is not due to translocation of GLUT but is probably due to an increase in the intrinsic activity of GLUT, which is mediated by a cyclic AMP-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document