Inhibitory role of large intergenic noncoding RNA-ROR on tamoxifen resistance in the endocrine therapy of breast cancer by regulating the PI3K/Akt/mTOR signaling pathway

2018 ◽  
Vol 234 (2) ◽  
pp. 1904-1912 ◽  
Author(s):  
Peng-Wei Lu ◽  
Lin Li ◽  
Fang Wang ◽  
Yuan-Ting Gu
2016 ◽  
Vol 160 (4) ◽  
pp. 555-559 ◽  
Author(s):  
D. V. Sorokin ◽  
A. M. Scherbakov ◽  
I. A. Yakushina ◽  
S. E. Semina ◽  
M. V. Gudkova ◽  
...  

2021 ◽  
pp. 114081
Author(s):  
Min-Gu Lee ◽  
Yun-Suk Kwon ◽  
Kyung-Soo Nam ◽  
Seo Yeon Kim ◽  
In Hyun Hwang ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Bing Wang ◽  
Xiao-li Zhang ◽  
Chen-xi Li ◽  
Ning-ning Liu ◽  
Min Hu ◽  
...  

Abstract Background Oral cancer is a malignant disease that threatenshuman life and greatly reducespatientquality of life. ANLN was reported to promote the progression of cancer. This study aims to investigate the role of ANLNin oral cancer and the underlying molecular mechanism. Methods ANLN expression was downregulated by RNAi technology. The effect of ANLN on cell behaviors, including proliferation, cell cycle progression, invasion, and apoptosis, was detected. Western blotting analysis was used to explore the mechanism by whichANLN functions in oral cancer. Results Data from TCGA database showed that ANLN was expressed at significantly higher levels in tumor tissues thanin normal control tissues. Patients with higher ANLN expression exhibitedshorter survivaltimes. ANLN was alsoabundantly expressedin the cancer cell lines CAL27 and HN30. When ANLN was knocked down in CAL27 and HN30 cells, cell proliferation and colony formation weredecreased. The cell invasion ability was also inhibited. However, the cell apoptosis rate was increased. In addition, the levels of critical members of the PI3K signaling pathway, includingPI3K, mTOR, Akt, and PDK-1, were significantlyreducedafter ANLN was knocked down in CAL27 cells. Conclusions ANLN contributes to oral cancerprogressionand affects activation ofthe PI3K/mTOR signaling pathway. This study providesa new potential targetfor drug development and treatment in oral cancer.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 325 ◽  
Author(s):  
Xiaojuan Li ◽  
Yunping Tang ◽  
Fangmiao Yu ◽  
Yu Sun ◽  
Fangfang Huang ◽  
...  

We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.


Life Sciences ◽  
2020 ◽  
Vol 259 ◽  
pp. 118239 ◽  
Author(s):  
Narges Dastmalchi ◽  
Mohammad Ali Hosseinpourfeizi ◽  
Seyed Mahdi Banan Khojasteh ◽  
Behzad Baradaran ◽  
Reza Safaralizadeh

2020 ◽  
Author(s):  
Shoukai Zong ◽  
Wei Dai ◽  
Wencheng Fang ◽  
Xiangting Guo ◽  
Kai Wang

Abstract Objective This study aimed to investigate the effect of SIK2 on cisplatin resistance induced by aerobic glycolysis in breast cancer cells and its potential mechanism. Methods qRT-PCR and Western blot were used to detect SIK2 mRNA and protein levels. Cisplatin (DDP) resistant cell lines of breast cancer cells were established, CCK-8 was used to measure and evaluate the viability, and Transwell was used to evaluate the cell invasion capability. Flow cytometry was adopted to evaluate the apoptosis rate. The glycolysis level was evaluated by measuring glucose consumption and lactic acid production. The protein levels of p-PI3K, p- protein kinase B (Akt) and p-mTOR were determined by western blot. Results SIK2 is highly expressed in breast cancer tissues and cells compared with adjacent tissues and normal human breast epithelial cells, and has higher diagnostic value for breast cancer. Silencing SIK2 expression can inhibit proliferation and invasion of breast cancer cells and induce their apoptosis. In addition, SIK2 knockdown inhibits glycolysis, reverses the resistance of drug-resistant cells to cisplatin, and inhibits PI3K/AKT/mTOR signaling pathway. When LY294002 is used to inhibit PI3K/AKT/mTOR signaling pathway, the effect of Sh-SIK2 on aerobic glycolysis of breast cancer cells can be reversed. Conclusion SIK2 can promote cisplatin resistance caused by aerobic glycolysis of breast cancer cells through PI3K/AKT/mTOR signaling pathway, which may be a new target to improve cisplatin resistance of breast cancer cells.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153155 ◽  
Author(s):  
Chakrabhavi Dhananjaya Mohan ◽  
V. Srinivasa ◽  
Shobith Rangappa ◽  
Lewis Mervin ◽  
Surender Mohan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document