Methane potential and metagenomics of wastewater sludge and a methane-producing landfill solid sample as microbial inocula for anaerobic digestion of food waste

2018 ◽  
Vol 94 (4) ◽  
pp. 1123-1133 ◽  
Author(s):  
María V Sillas-Moreno ◽  
Carolina Senés-Guerrero ◽  
Adriana Pacheco ◽  
Alejandro Montesinos-Castellanos

2018 ◽  
Vol 71 ◽  
pp. 612-617 ◽  
Author(s):  
Shakira R. Hobbs ◽  
Amy E. Landis ◽  
Bruce E. Rittmann ◽  
Michelle N. Young ◽  
Prathap Parameswaran


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1351
Author(s):  
Yue Zhang ◽  
Sigrid Kusch-Brandt ◽  
Sonia Heaven ◽  
Charles J. Banks

The effect of pasteurisation and co-pasteurisation on biochemical methane potential values in anaerobic digestion (AD) was studied. Pasteurisation prior to digestion in a biogas plant is a common hygienisation method for organic materials which contain or have been in contact with animal by-products. Tests were carried out on food waste, slaughterhouse waste, animal blood, cattle slurry, potato waste, card packaging and the organic fraction of municipal solid waste (OFMSW); pasteurisation at 70 °C for 1 h was applied. Pasteurisation had increased the methane yields of blood (+15%) and potato waste (+12%) only, which both had a low content of structural carbohydrates (hemi-cellulose and cellulose) but a particularly high content of either non-structural carbohydrates such as starch (potato waste) or proteins (blood). With food waste, card packaging and cattle slurry, pasteurisation had no observable impact on the methane yield. Slaughterhouse waste and OFMSW yielded less methane after pasteurisation in the experiments (but statistical significance of the difference between pasteurised and unpasteurised slaughterhouse waste or OFMSW was not confirmed in this work). It is concluded that pasteurisation can positively impact the methane yield of some specific substrates, such as potato waste, where heat-treatment may induce gelatinisation with release of the starch molecules. For most substrates, however, pasteurisation at 70 °C is unlikely to increase the methane yield. It is unlikely to improve biodegradability of lignified materials, and it may reduce the methane yield from substrates which contain high contents of volatile components. Furthermore, in this experimental study, the obtained methane yield was unaffected by whether the substrates were pasteurised individually and then co-digested or co-pasteurised as a mixture before batch digestion.



Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2085
Author(s):  
Yang Mo Gu ◽  
Seon Young Park ◽  
Ji Yeon Park ◽  
Byoung-In Sang ◽  
Byoung Seong Jeon ◽  
...  

The impact of attrition ball-mill pretreatment on food waste particle size, soluble chemical oxygen demand (SCOD), biochemical methane potential, and microbial community during anaerobic digestion was investigated based on milling speed and time. The uniformity of particle size improved with increasing milling speed and time. The SCOD of the pretreated samples increased to 4%, 7%, and 17% at the speeds of 150, 225, and 300 rpm, respectively, compared to the control. Milling time did not significantly change the SCOD. The cumulative methane productions of 430, 440, and 490 mL/g-VS were observed at the speeds of 150, 225, and 300 rpm, respectively, while the untreated sample exhibited the cumulative methane production of 390 mL/g-VS. Extended milling time did not improve methane production much. When the milling times of 10, 20, and 30 min were applied with the milling speed fixed at 300 rpm, the methane productions of 490, 510, and 500 mL/g-VS were observed respectively. Ball-mill pretreatment also increased the total volatile fatty acids. During the anaerobic digestion (AD) of ball-mill treated food waste, acetoclastic methanogens predominated, with a relative abundance of 48–49%. Interestingly, hydrogenotrophic methanogens were 1.6 times higher in the pretreated samples than those in the control. These results showed the potential of attrition ball milling as a food waste pretreatment for improving methane production.



Author(s):  
Kacper Świechowski ◽  
Andrzej Białowiec ◽  
Bartosz Matyjewicz ◽  
Paweł Telega

The proof-of-the-concept of application of low-temperature food waste biochars for the anaerobic digestion (AD) of food waste (the same substrate) was tested. The concept assumes that residual heat from biogas utilization may be reused for biochar production. Four low-temperature biochars produced under two pyrolytic temperatures 300 °C and 400 °C and under atmospheric and 15 bars pressure with 60 minutes retention time were used. Additionally, the biochar produced during hydrothermal carbonization (HTC) was tested. The work studied the effect of a low biochar dose (0.05 gBC x gTSsubstrate-1, or 0.65 gBC x L-1) on AD batch reactors’ performance. The biochemical methane potential test took 21 days and the process kinetics using the first-order model were determined. The results showed that biochars obtained under 400°C with atmospheric pressure and under HTC conditions improve methane yield by 3.6%. It has been revealed that thermochemical pressure influences the electrical conductivity of biochars. The biomethane was produced with a rate (k) of 0.24 d-1, and the most effective biochars increased the biodegradability of FW to 81% in comparison to variants without biochars (75%).



2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Shakira R. Hobbs ◽  
Prathap Parameswaran ◽  
Barbara Astmann ◽  
Jay P. Devkota ◽  
Amy E. Landis

Food waste and biopolymers, plastics derived from plants, are unexploited sources of energy when discarded in landfills without energy recovery. In addition, polylactic acid (PLA) and food waste have complimentary characteristics for anaerobic digestion; both are organic and degrade under anaerobic conditions. Lab-scale reactors were set up to quantify the solubilization of pretreated amorphous and crystalline PLA. Biochemical methane potential (BMP) assays were performed to quantify CH4 production from both treated and untreated PLA in the presence of food waste and anaerobic digested sludge. Amorphous and crystalline PLA reached near-complete solubilization at 97% and 99%, respectively, when alkaline pretreatment was applied. The PLA that received alkaline treatment produced the most of CH4 throughout the run time of 70 days. The PLA without treatment resulted in 54% weight reduction after anaerobic digestion. Results from this study show that alkaline pretreatment has the greatest solid reduction of PLA and maximum production of CH4 when combined with food waste and anaerobic digested sludge.



2021 ◽  
Author(s):  
Fabio Codignole Luz ◽  
Maurizio Volpe ◽  
Antonio Messineo


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 284
Author(s):  
Xiaojue Li ◽  
Naoto Shimizu

To enhance anaerobic fermentation during food waste (FW) digestion, pretreatments can be applied or the FW can be co-digested with other waste. In this study, lipase addition (LA), hydrothermal pretreatment (HTP), and a combination of both methods (HL) were applied to hydrolyze organic matter in FW. Furthermore, the effects of crude glycerol (CG), which provided 5%, 10%, and 15% of the volatile solids (VS) as co-substrate (denoted as CG5, CG10, and CG15, respectively), on the anaerobic digestion of FW were assessed. With an increasing proportion of CG in the co-digestion experiment, CG10 showed higher methane production, while CG15 negatively affected the anaerobic digestion (AD) performance owing to propionic acid accumulation acidifying the reactors and inhibiting methanogen growth. As the pretreatments partially decomposed hard-to-degrade substances in advance, pretreated FW showed a stronger methane production ability compared with raw FW, especially using the HL method, which was significantly better than co-digestion. HL pretreatment was shown to be a promising option for enhancing the methane potential value (1.773 NL CH4/g VS) according to the modified Gompertz model.



Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 32 ◽  
Author(s):  
Mohammad Al-Addous ◽  
Motasem N. Saidan ◽  
Mathhar Bdour ◽  
Mohammad Alnaief

The potential benefits of the application of a circular economy—converting biomass at Za'atari Syrian refugee camps into energy—was investigated in this study. Representative organic waste and sludge samples were collected from the camp, mixed in different ratios, and analyzed in triplicate for potential biogas yield. Numerous calorific tests were also carried out. The tangential benefit of the co-digestion that was noticed was that it lowered the value of the total solid content in the mixture to the recommended values for wet digestion without the need for freshwater. To test the potential methane production, the automated methane potential test system (AMPTS) and the graduated tubes in the temperature-controlled climate room GB21 were utilized. Also, calorific values were determined for the organic waste and sludge on both a dry and a wet basis. The maximum biogas production from 100% organic waste and 100% sludge using AMPTS was 153 m3 ton-1 and 5.6 m3 ton-1, respectively. Methane yield reached its maximum at a Vs sub/ Vs inoculum range of 0.25–0.3. In contrast, the methane yield decreased when the Vs sub/ Vs inoculum exceeded 0.46. The optimum ratio of mixing of municipal food waste to sludge must be carefully selected to satisfy the demands of an energy production pilot plant and avoid the environmental issues associated with the sludge amount at wastewater treatment plants (WWTPs). A possible ratio to start with is 60–80% organic waste, which can produce 21–65 m3· biogas ton-1 fresh matter (FM). The co-digestion of organic waste and sludge can generate 38 Nm3/day of methane, which, in theory, can generate about 4 MW in remote refugee camps.



2018 ◽  
Vol 67 ◽  
pp. 02047 ◽  
Author(s):  
Reigina Sandriaty ◽  
Cindy Priadi ◽  
Septiana Kurnianingsih ◽  
Ayik Abdillah

The generation of fat, oil and grease (FOG) waste can be a nuisance hazard, but also a potential for resource recovery. FOG waste can be utilized as nutrient and energy source through anaerobic digestion which may increase methane yield but also increase presence of inhibitors. Using the biochemical methane potential method, this research is aimed to determine the effect of FOG waste in the co-digestion process of food waste (FW) to produce biogas. The research was conducted for 42 days at 37°C using FOG waste codigested with FW of 3 different volatile solid (VS) rasio which are 0.125, 0.3, and 0.5. The results showed that FOG waste combined with FW has a methane yield that may reach up to 485 ± 36.8 mL CH4/gr VS, the highest one produced by the 0.125 VS rasio mix. While the ratio of FOG waste with FW at 0.3 and 0.5 only produce 128 ± 195 and 4 ± 1.45 mL CH4/gr VS, respectively. The ratio of 0.125 also demonstrates the highest COD reduction of 56% compared to the other ratio which indicates the 0.125 FOG and FW ratio can be implemented to utilize FOG waste and increase methane yield during anaerobic digestion process.



Author(s):  
Siti Mariam Sulaiman ◽  
◽  
Roslinda Seswoya ◽  

Sewage sludge and food waste; are organic wastes suitable for the anaerobic digestion. However, the digestion of sewage sludge and food waste as solely substrate is having a drawback in term of methane yield. Therefore, many researchers combined these two wastes as a co-substrate and used in co-digestion. This study focused to evaluate the anaerobic co-digestion of domestic sewage sludge (in form of primary and secondary sewage sludge) with food waste under mesophilic temperature in a batch assay. Two series of batch biochemical methane potential (BMP) test were conducted using the Automatic Methane Potential Test System (AMPTS II). Each set are labelled with BMP 1(PSS:FW) and BMP 2 (SSS:FW). The BMP tests were monitored automatically until the methane production is insignificant. Using the data observed in the laboratory, the kinetic paremeters were calculated. Also, the First-order and Modified Gompertz modeling were included to predict the anaerobic digestion performance. Finding showed that BMP 1(PSS:FW) have better performance with respect to the higher ultimate methane yield and methane production rate as compared to BMP 2 (SSS:FW). Besides, the kinetic parameters from laboratory work and modeling were slightly different. In which the kinetic paremetes from modelling is lesser. However, both modelling are well fitted to the experimental data with high correlation coefficient, R2 ranged from 0.993 to 0.997.



Sign in / Sign up

Export Citation Format

Share Document