scholarly journals Effect of Pasteurisation on Methane Yield from Food Waste and Other Substrates in Anaerobic Digestion

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1351
Author(s):  
Yue Zhang ◽  
Sigrid Kusch-Brandt ◽  
Sonia Heaven ◽  
Charles J. Banks

The effect of pasteurisation and co-pasteurisation on biochemical methane potential values in anaerobic digestion (AD) was studied. Pasteurisation prior to digestion in a biogas plant is a common hygienisation method for organic materials which contain or have been in contact with animal by-products. Tests were carried out on food waste, slaughterhouse waste, animal blood, cattle slurry, potato waste, card packaging and the organic fraction of municipal solid waste (OFMSW); pasteurisation at 70 °C for 1 h was applied. Pasteurisation had increased the methane yields of blood (+15%) and potato waste (+12%) only, which both had a low content of structural carbohydrates (hemi-cellulose and cellulose) but a particularly high content of either non-structural carbohydrates such as starch (potato waste) or proteins (blood). With food waste, card packaging and cattle slurry, pasteurisation had no observable impact on the methane yield. Slaughterhouse waste and OFMSW yielded less methane after pasteurisation in the experiments (but statistical significance of the difference between pasteurised and unpasteurised slaughterhouse waste or OFMSW was not confirmed in this work). It is concluded that pasteurisation can positively impact the methane yield of some specific substrates, such as potato waste, where heat-treatment may induce gelatinisation with release of the starch molecules. For most substrates, however, pasteurisation at 70 °C is unlikely to increase the methane yield. It is unlikely to improve biodegradability of lignified materials, and it may reduce the methane yield from substrates which contain high contents of volatile components. Furthermore, in this experimental study, the obtained methane yield was unaffected by whether the substrates were pasteurised individually and then co-digested or co-pasteurised as a mixture before batch digestion.

2018 ◽  
Vol 67 ◽  
pp. 02047 ◽  
Author(s):  
Reigina Sandriaty ◽  
Cindy Priadi ◽  
Septiana Kurnianingsih ◽  
Ayik Abdillah

The generation of fat, oil and grease (FOG) waste can be a nuisance hazard, but also a potential for resource recovery. FOG waste can be utilized as nutrient and energy source through anaerobic digestion which may increase methane yield but also increase presence of inhibitors. Using the biochemical methane potential method, this research is aimed to determine the effect of FOG waste in the co-digestion process of food waste (FW) to produce biogas. The research was conducted for 42 days at 37°C using FOG waste codigested with FW of 3 different volatile solid (VS) rasio which are 0.125, 0.3, and 0.5. The results showed that FOG waste combined with FW has a methane yield that may reach up to 485 ± 36.8 mL CH4/gr VS, the highest one produced by the 0.125 VS rasio mix. While the ratio of FOG waste with FW at 0.3 and 0.5 only produce 128 ± 195 and 4 ± 1.45 mL CH4/gr VS, respectively. The ratio of 0.125 also demonstrates the highest COD reduction of 56% compared to the other ratio which indicates the 0.125 FOG and FW ratio can be implemented to utilize FOG waste and increase methane yield during anaerobic digestion process.


Author(s):  
Siti Mariam Sulaiman ◽  
◽  
Roslinda Seswoya ◽  

Sewage sludge and food waste; are organic wastes suitable for the anaerobic digestion. However, the digestion of sewage sludge and food waste as solely substrate is having a drawback in term of methane yield. Therefore, many researchers combined these two wastes as a co-substrate and used in co-digestion. This study focused to evaluate the anaerobic co-digestion of domestic sewage sludge (in form of primary and secondary sewage sludge) with food waste under mesophilic temperature in a batch assay. Two series of batch biochemical methane potential (BMP) test were conducted using the Automatic Methane Potential Test System (AMPTS II). Each set are labelled with BMP 1(PSS:FW) and BMP 2 (SSS:FW). The BMP tests were monitored automatically until the methane production is insignificant. Using the data observed in the laboratory, the kinetic paremeters were calculated. Also, the First-order and Modified Gompertz modeling were included to predict the anaerobic digestion performance. Finding showed that BMP 1(PSS:FW) have better performance with respect to the higher ultimate methane yield and methane production rate as compared to BMP 2 (SSS:FW). Besides, the kinetic parameters from laboratory work and modeling were slightly different. In which the kinetic paremetes from modelling is lesser. However, both modelling are well fitted to the experimental data with high correlation coefficient, R2 ranged from 0.993 to 0.997.


2017 ◽  
Vol 16 (2) ◽  
pp. 347-360 ◽  
Author(s):  
Dimitrios Komilis ◽  
Raquel Barrena ◽  
Rafaela Lora Grando ◽  
Vasilia Vogiatzi ◽  
Antoni Sánchez ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1018
Author(s):  
Vijayalakshmi Arelli ◽  
Sudharshan Juntupally ◽  
Sameena Begum ◽  
Gangagni Rao Anupoju

The aim of this study was to treat food waste containing 25% total solids (TS) through dry anaerobic digestion (dry AD) process at various pressures (0.5 to 2.5 kg/cm2) and different time duration (20 to 100 min) to understand the impact of pretreatment in enhancing the methane generation potential along with insights on scale up. The findings revealed that vs. reduction and methane yield of 60% and 0.25 L CH4/(g VSadded) can be achieved with pretreated food waste at two kilograms per square centimeter, while pretreatment of food waste at 2 kg/cm2 for 100 min enhanced the vs. reduction from 60% to 85% and methane yield from 0.25 to 0.368 L CH4/(g VSadded). However, the net energy indicated that 40 min of pre -treatment at two kilograms per square centimeter can be a suitable option as methane yield and vs. reduction of 0.272 L CH4/(g VSadded) and 70%, respectively was achieved. The vs. reduction and the methane yield of 45% and 0.14 L CH4/(g VSadded), respectively was obtained from untreated food waste which illustrated that pretreatment had significantly impacted on the enhancement of methane generation and organic matter removal which can make the dry AD process more attractive and feasible at commercial scale.


2013 ◽  
Vol 67 (2) ◽  
pp. 410-417 ◽  
Author(s):  
M. A. De la Rubia ◽  
V. Fernández-Cegrí ◽  
F. Raposo ◽  
R. Borja

Due to the chemical and physical structure of a lignocellulosic biomass, its anaerobic digestion (AD) is a slow and difficult process. In this paper, the results obtained from a batch biochemical methane potential (BMP) test and fed-batch mesophilic AD assays of sunflower oil cake (SuOC) are presented. Taking into account the low digestibility shown during one-stage experiments the methane yield decreased considerably after increasing the organic loading rate (OLR) from 2 to 3 g VS L−1 d−1, SuOC was subjected to a two-stage AD process (hydrolytic-acidogenic and methanogenic stages), in two separate reactors operating in series where the methanogenic stage became acidified (with >1,600 mg acetic acid L−1) at an OLR as low as 2 g VS L−1 d−1. More recently, BMP assays were carried out after mechanical, thermal, and ultrasonic pre-treatments to determine the best option on the basis of the methane yield obtained.


2018 ◽  
Vol 71 ◽  
pp. 612-617 ◽  
Author(s):  
Shakira R. Hobbs ◽  
Amy E. Landis ◽  
Bruce E. Rittmann ◽  
Michelle N. Young ◽  
Prathap Parameswaran

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2017
Author(s):  
Domenica Pangallo ◽  
Altea Pedullà ◽  
Demetrio Antonio Zema ◽  
Paolo S. Calabrò

Anaerobic digestion (AD) is a suitable management option for the energy valorization of many wastes, including the organic fraction of municipal solid waste (OFMSW). However, in some cases, long storage after the separate collection of this waste is required for management reasons, especially when the amount of waste to be treated temporarily exceeds the capacity of available AD plants. This study evaluates the biochemical methane potential (BMP) of the OFMSW after preliminary storage of 2, 6, and 10 days, in order to assess whether they are still suitable for AD or not. Moreover, the accuracy of three kinetic models (first order, Gompertz, and logistic models) in estimating the methane yield of stored OFMSW is tested. The resulting methane yield was between about 500 and 650 NmL·gVS−1 and slightly increased with the increase of the storage time after collection. Overall, this study has demonstrated that storage of OFMSW, when the collected amount of solid waste exceeds the treatment capacity of AD plants, a storage time up to 10 days does not impact the methane yield of the process.


2020 ◽  
Vol 7 (3) ◽  
pp. 106
Author(s):  
Harald Wedwitschka ◽  
Daniela Gallegos Ibanez ◽  
Franziska Schäfer ◽  
Earl Jenson ◽  
Michael Nelles

Chicken manure is an agricultural residue material with a high biomass potential. The energetical utilization of this feedstock via anaerobic digestion is an interesting waste treatment option. One waste treatment technology most appropriate for the treatment of stackable (non-free-flowing) dry organic waste materials is the dry batch anaerobic digestion process. The aim of this study was to evaluate the substrate suitability of chicken manure from various sources as feedstock for percolation processes. Chicken manure samples from different housing forms were investigated for their chemical and physical material properties, such as feedstock composition, permeability under compaction and material compressibility. The permeability under compaction of chicken manure ranged from impermeable to sufficiently permeable depending on the type of chicken housing, manure age and bedding material used. Porous materials, such as straw and woodchips, were successfully tested as substrate additives with the ability to enhance material mixture properties to yield superior permeability and allow sufficient percolation. In dry anaerobic batch digestion trials at lab scale, the biogas generation of chicken manure with and without any structure material addition was investigated. Digestion trials were carried out without solid inoculum addition and secondary methanization of volatile components. The specific methane yield of dry chicken manure was measured and found to be 120 to 145 mL/g volatile solids (VS) and 70 to 75 mL/g fresh matter (FM), which represents approximately 70% of the methane potential based on fresh mass of common energy crops, such as corn silage.


Sign in / Sign up

Export Citation Format

Share Document