Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi 2 O 3 and Fe 2 O 3

Author(s):  
Shikhgasan Ramazanov ◽  
Dinara Sobola ◽  
Ştefan Ţălu ◽  
Farid Orudzev ◽  
Ali Arman ◽  
...  
PIERS Online ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 105-108 ◽  
Author(s):  
Haipeng Lu ◽  
Jing Yang ◽  
Longjiang Deng

Author(s):  
Byoung-Joon Kim ◽  
Hae-A-Seul Shin ◽  
In-Suk Choi ◽  
Young-Chang Joo

Abstract The electrical resistance Cu film on flexible substrate was investigated in cyclic bending deformation. The electrical resistance of 1 µm thick Cu film on flexible substrate increased up to 120 % after 500,000 cycles in 1.1 % tensile bending strain. Crack and extrusion were observed due to the fatigue damage of metal film. Low bending strain did not cause any damage on metal film but higher bending strain resulted in severe electrical and mechanical damage. Thinner film showed higher fatigue resistance because of the better mechanical property of thin film. Cu film with NiCr under-layer showed poorer fatigue resistance in tensile bending mode. Ni capping layer did not improve the fatigue resistance of Cu film, but Al capping layer suppressed crack formation and lowered electrical resistance change. The NiCr under layer, Ni capping layer, and Al capping layer effect on electrical resistance change of Cu film was compared with Cu only sample.


2017 ◽  
Vol 9 (5) ◽  
pp. 05035-1-05035-6 ◽  
Author(s):  
G. I. Kopach ◽  
◽  
R. P. Mygushchenko ◽  
G. S. Khrypunov ◽  
A. I. Dobrozhan ◽  
...  

2020 ◽  
Vol 33 (5) ◽  
pp. 1226-1236 ◽  
Author(s):  
Saeko Tada-Oikawa ◽  
Mana Eguchi ◽  
Michiko Yasuda ◽  
Kiyora Izuoka ◽  
Akihiko Ikegami ◽  
...  

2020 ◽  
Vol 315 ◽  
pp. 112341
Author(s):  
Zhaojun Liu ◽  
Bian Tian ◽  
Xu Fan ◽  
Jiangjiang Liu ◽  
Zhongkai Zhang ◽  
...  

Author(s):  
Anca Peter ◽  
Leonard Mihaly Cozmuta ◽  
Camelia Nicula ◽  
Anca Mihaly Cozmuta ◽  
Robert Apjok ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoqian Hao ◽  
Xie Zhang ◽  
Zheng Li ◽  
Jianlong Kou ◽  
Fengmin Wu

Transport direction of water droplets on a functionalized surface is of great significance due to its wide applications in microfluidics technology. The prevailing view is that a water droplet on...


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Michael J. Negus ◽  
Matthew R. Moore ◽  
James M. Oliver ◽  
Radu Cimpeanu

AbstractThe high-speed impact of a droplet onto a flexible substrate is a highly non-linear process of practical importance, which poses formidable modelling challenges in the context of fluid–structure interaction. We present two approaches aimed at investigating the canonical system of a droplet impacting onto a rigid plate supported by a spring and a dashpot: matched asymptotic expansions and direct numerical simulation (DNS). In the former, we derive a generalisation of inviscid Wagner theory to approximate the flow behaviour during the early stages of the impact. In the latter, we perform detailed DNS designed to validate the analytical framework, as well as provide insight into later times beyond the reach of the proposed analytical model. Drawing from both methods, we observe the strong influence that the mass of the plate, resistance of the dashpot, and stiffness of the spring have on the motion of the solid, which undergo forced damped oscillations. Furthermore, we examine how the plate motion affects the dynamics of the droplet, predominantly through altering its internal hydrodynamic pressure distribution. We build on the interplay between these techniques, demonstrating that a hybrid approach leads to improved model and computational development, as well as result interpretation, across multiple length and time scales.


Sign in / Sign up

Export Citation Format

Share Document