scholarly journals Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the upland-wetland interface: The influence of hydrogeologic setting

2013 ◽  
Vol 118 (2) ◽  
pp. 825-841 ◽  
Author(s):  
Jason D. Demers ◽  
Joseph B. Yavitt ◽  
Charles T. Driscoll ◽  
Mario R. Montesdeoca
2020 ◽  
Author(s):  
Ian Boothroyd ◽  
Fred Worrall ◽  
Geoff Abbott ◽  
Catherine Moody ◽  
Gareth Clay ◽  
...  

<p><span>Peatlands are important terrestrial carbon stores and it is important to understand the processes involved in carbon cycling. At Moor House, an upland blanket bog in the United Kingdom (UK), stoichiometric approaches have been adopted to understand carbon cycling through the peatland and this has been used to understand the production, transport and transformation of organic matter from terrestrial to aquatic systems.</span></p><p><span>Previous results analysing vegetation, peat cores, soil pore water from shallow and deep sample depths, and stream water from Moor House assessed how the composition of organic matter changes through the peatland system, to its export in the stream network. Results showed that there was an increase in the nominal carbon oxidation state (C<sub>ox</sub>) of dissolved organic matter (DOM) transferred from soil pore water to stream water. The composition of DOM in soil pore water evolved from near-surface peat layers but stream water DOM was quite distinct in composition. This study assessed the role of DOM in the degradation of peat organic matter by examining the composition of DOM through the peat profile and in separate flow pathways. Sampling was undertaken at Moor House, with sampling from surface, shallow and deep soil water; surface runoff and stream water. Samples were analysed for their elemental content (C, H, N and O), and differential scanning calorimetry and bomb calorimetry.</span></p><p> </p>


2006 ◽  
Author(s):  
Stephen W. Webb ◽  
James M. Phelan ◽  
Teklu Hadgu ◽  
Joshua S. Stein ◽  
Cedric M. Sallaberry

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 355
Author(s):  
Katarzyna Szopka ◽  
Iwona Gruss ◽  
Dariusz Gruszka ◽  
Anna Karczewska ◽  
Krzysztof Gediga ◽  
...  

This study examined the effects of waterlogging and forest litter introduced to soil on chemical properties of soil pore water and ecotoxicity of soils highly enriched in As. These effects were examined in a 21-day incubation experiment. Tested soil samples were collected from Złoty Stok, a historical centre of arsenic and gold mining: from a forested part of the Orchid Dump (19,600 mg/kg As) and from a less contaminated site situated in a neighboring forest (2020 mg/kg As). An unpolluted soil was used as control. The concentrations of As, Fe and Mn in soil pore water were measured together with a redox potential Eh. A battery of ecotoxicological tests, including a bioassay with luminescence bacteria Vibrio fischeri (Microtox) and several tests on crustaceans (Rapidtox, Thamnotox and Ostracodtox tests), was used to assess soil ecotoxicity. The bioassays with crustaceans (T. platyurus, H. incongruens) were more sensitive than the bacterial test Microtox. The study confirmed that the input of forest litter into the soil may significantly increase the effects of toxicity. Waterlogged conditions facilitated a release of As into pore water, and the addition of forest litter accelerated this effect thus causing increased toxicity.


2013 ◽  
Vol 10 (2) ◽  
pp. 891-904 ◽  
Author(s):  
K.-H. Knorr

Abstract. Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron reduction dominated biogeochemical regimes.


1992 ◽  
Vol 12 (3) ◽  
pp. 195-202 ◽  
Author(s):  
O. Banton ◽  
P. Lafranee ◽  
R. Martel ◽  
J.P. Villeneuve

1990 ◽  
Vol 7 (2) ◽  
pp. 151-168 ◽  
Author(s):  
K. W. BROWN ◽  
G. C. BARBEE ◽  
J. C. THOMAS ◽  
H. E. MURRAY

Sign in / Sign up

Export Citation Format

Share Document