scholarly journals The Effects of Forest Litter and Waterlogging on the Ecotoxicity of Soils Strongly Enriched in Arsenic in a Historical Mining Site

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 355
Author(s):  
Katarzyna Szopka ◽  
Iwona Gruss ◽  
Dariusz Gruszka ◽  
Anna Karczewska ◽  
Krzysztof Gediga ◽  
...  

This study examined the effects of waterlogging and forest litter introduced to soil on chemical properties of soil pore water and ecotoxicity of soils highly enriched in As. These effects were examined in a 21-day incubation experiment. Tested soil samples were collected from Złoty Stok, a historical centre of arsenic and gold mining: from a forested part of the Orchid Dump (19,600 mg/kg As) and from a less contaminated site situated in a neighboring forest (2020 mg/kg As). An unpolluted soil was used as control. The concentrations of As, Fe and Mn in soil pore water were measured together with a redox potential Eh. A battery of ecotoxicological tests, including a bioassay with luminescence bacteria Vibrio fischeri (Microtox) and several tests on crustaceans (Rapidtox, Thamnotox and Ostracodtox tests), was used to assess soil ecotoxicity. The bioassays with crustaceans (T. platyurus, H. incongruens) were more sensitive than the bacterial test Microtox. The study confirmed that the input of forest litter into the soil may significantly increase the effects of toxicity. Waterlogged conditions facilitated a release of As into pore water, and the addition of forest litter accelerated this effect thus causing increased toxicity.

2019 ◽  
Vol 3 (1) ◽  
pp. 42
Author(s):  
Arisdiansyah Putra ◽  
Ratna Widyaningsih ◽  
Mohammad Nurcholis

Open-pit coal mining as done by the coal mining site Melak have a impact on the surrounding natural environment. The impact of mining operations is that the land becomes unproductive and erosion is very high because of loosing its vegetation on ex-mining land. Vegetation influence the sensitivity of the soil to withstand destruction and transportation by rain and surface runoff and the occurrence of landslides. Analysis of soil erodibility factors seen from the physical-chemical properties of soil is one of the causes of erosion by using organic element parameters, soil structure, permeability, texture. The observation location was carried out on the disposal slope and low wall in-pit that has been revegetation with the hydroseeding technique. This research was carried out by making a design of erosion and sedimentation plots in the form of a zinc boundary measuring 2 x 2 m2, each box divides into three columns. The division of three columns in each box is done to get representative repetition data. Taking soil samples is carried out in each box using a sample ring.


2021 ◽  
Author(s):  
Katarzyna Szopka ◽  
Iwona Gruss ◽  
Dariusz Gruszka ◽  
Anna Karczewska ◽  
Agnieszka Dradrach ◽  
...  

<p>Arsenic is a trace metalloid, potentially toxic for humans, animals and for plants. The problem of soil pollution with arsenic occurs in Poland only on a local scale, but in the Sudetes and in their foreland, there are several sites were arsenic was mined in the past. Particularly high concentrations of As in soils were confirmed in Złoty Stok, formerly the main European centre of arsenic industry. Decomposing forest litter as well as flooding can affect mobilization of As and other toxic elements, change their speciation in pore water and influence the toxicity to biota. This study examined the chemistry and ecotoxicity of pore water acquired from two soils that developed in a former As mining site: from the “Orchid dump” and from a nearby forest. Soils used in the experiment  contained very high concentrations of As: 2020 and 19600 mg/kg.  An unpolluted soil was used as a control. Soil samples were incubated in various moisture conditions (70%  of water holding capacity and 100% flooding), in the presence and absence of organic matter introduced with forest litter collected from a beech stand. Soil pore water was collected three times (after 7, 21 and 90 days) with MacroRhizon suction samplers. Chemical analysis of pore water involved the measurements of concentrations of As and potentially toxic metals, including Mn and Fe, as well as the concentrations of P. Ecotoxicity of pore water was examined in two bioassays: THAMNOTOXKIT F and RAPIDTOXKIT F. The Thamnocephalus platyurus toxicity test is a 24h bioassay based on the mortality of the test organisms (freshwater crustaceans). The sublethal effects were determined using RAPIDOTOXKIT, based on ISO standard 2011. This procedure measures the feeding inhibition of the juveniles of T. platyurus. A very high toxicity to T. platyurus was confirmed in the pore water of the soil richer in As, where all the organisms died. High mortality of crustaceans > 83,33 % was found in the pore water of soil collected from the Orchid dump, in particular after a longer incubation period. The addition of beech litter, as well as soil flooding, caused an increased mortality of test organisms that reached 100%, regardless of the time of incubation. In the pore water of less polluted soil, collected from the forest site in Złoty Stok, an increased mortality of crustaceans was observed upon the addition of beech litter. The RAPIDOTOXKIT test turned out less sensitive to high concentrations of As and other toxic components present in soil pore water. The feeding inhibition did not correspond directly with the concentrations of As. However, in the case of samples with the highest As concentration (130 mg/L), found in pore water of the Orchid dump soil treated with beech litter and fully flooded, the feeding inhibition reached 100%.</p><p>This research was funded by the National Science Centre of Poland; Project No. 2016/21/B/ST10/02221</p>


2006 ◽  
Author(s):  
Stephen W. Webb ◽  
James M. Phelan ◽  
Teklu Hadgu ◽  
Joshua S. Stein ◽  
Cedric M. Sallaberry

2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Vinod Kumar Kanaujia

A field experiment was conducted during the Kharif and Rabi seasons of 2001-2005 in regular crop sequence at Crop Research Station, Nawabganj, CSA University of Agriculture & Technology, Kanpur in order to find out the effect of farm yard manure (FYM) and NPK levels in rice-wheat cropping system. One level of FYM (10 t ha-1) and one level of N (120 kg ha-1),three levels of P (0, 30, 60 kg ha-1), four levels of K (0, 30, 60, 90 kg ha-1) were tested. The grain yield of rice and wheat crops were increased at levels of FYM (10 t ha-1) and NPK (120, 60, 60 kg h a-1). The application of FYM with 120 kg N, 60 kg P O and 60 kg K O ha-1 gave significantly highest yield of rice and wheat crops. The 2 5 2 application of NPK fertilizers with FYM were found increased in their uptake. The application of NPK fertilizers with FYM was found improvements in physio-chemical properties of soil like soil ph, organic carbon and available NPK.


2011 ◽  
Vol 3 (5) ◽  
pp. 37-42
Author(s):  
Renata Mikalauskienė ◽  
Donatas Butkus ◽  
Ingrida Pliopaitė Bataitienė

The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Csand 40K transfer in the system “soil-plant”. Santrauka Straipsnyje nagrinėjama gamtinės (40K) ir dirbtinės (137Cs) kilmės radionuklidų savitųjų aktyvumų ir jų santykio kaita skirtinguose Lietuvos teritorijos dirvožemiuose. Dirvožemio mėginiai parinkti iš vietovių, kurios buvo labiau užterštos po Černobylio atominės elektrinės avarijos ir buvusių branduolinių bandymų. Tyrimo metu nustatytos pagrindinės fizinės cheminės dirvožemio savybės ir jų poveikis 40K aktyvumų koncentracijai. 137Csir 40K savitieji aktyvumai dirvožemyje tirti esant sausam mėginio svoriui. 137Cs savitieji aktyvumai sausame dirvožemyje svyravo nuo 1,1±1,0 iki 14,3±0,9 Bq/kg, o 40K savitieji aktyvumai – nuo 326±29 iki 740±15 Bq/kg. 137Csir 40K savitųjų aktyvumų santykis skirtingų vietovių dirvožemiuose kito nuo 0,0034 iki 0,0240 Bq/kg. Tyrimo rezultatai gali būti panaudoti, nustatant ir įvertinant 137Csir 40K pernašą sistemoje dirvožemis–augalai.


Author(s):  
Ishowriya Yumnam

In this review article the usage of waste sewage sludge and the biomass ash for improving the engineering and non-engineering properties’ of both concrete and soil are discussed in detail. Numerous past research works were studied in detail so as to predict the behavior of biomass ash and waste sewage sludge when used for the stabilization process of soil and concrete. Past studies related to the usage of stabilized sewage sludge and biomass ash were studied in a detailed manner and depending upon the past studies several conclusions has been drawn which are discussed further. Several studies related to the usage of the waste sewage sludge for improving soil physical, chemical and biological properties showed that the usage of waste sewage sludge improve the physical properties, chemical properties, macro-nutriential properties and micro-nutriential properties up to a great extent. Depending upon the results of the past studies it can be concluded that the usage of sewage sludge has positive impact over all the properties of soil and this waste should be utilized in improving the properties of soil rather than dumping. Numerous studies related to the usage of the biomass ash showed that biomass ash has positive impact over both soil as well as concrete. Studies related to the usage of the biomass ash in soil showed that there was a positive response of the stabilized soil after its stabilization with the biomass ash. Studies related to the usage of the biomass ash in concrete showed that the biomass ash can be used up to 10 percent replacement of the ordinary Portland cement so as to attain maximum strength results from it.


Sign in / Sign up

Export Citation Format

Share Document