Leishmania regulates host macrophage miRNAs expression by engaging transcription factor c‐Myc

Author(s):  
Devki Nandan ◽  
Carolina Torturella Rath ◽  
Neil E. Reiner
Author(s):  
Maik Luu ◽  
Rossana Romero ◽  
Jasmin Bazant ◽  
Elfadil Abass ◽  
Sabrina Hartmann ◽  
...  

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
C Trierweiler ◽  
K Willim ◽  
HE Blum ◽  
P Hasselblatt

2012 ◽  
Vol 224 (03) ◽  
Author(s):  
I Kuznetsova ◽  
K Welte ◽  
J Skokowa

2007 ◽  
Vol 213 (2) ◽  
pp. 219-228 ◽  
Author(s):  
MH De Borst ◽  
J Prakash ◽  
WBWH Melenhorst ◽  
MC van den Heuvel ◽  
RJ Kok ◽  
...  

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


Sign in / Sign up

Export Citation Format

Share Document