scholarly journals Current status and role of programmed ventricular stimulation in patients without sustained ventricular arrhythmias and reduced ejection fraction: Analysis of the Japan cardiac device treatment registry database

2020 ◽  
Author(s):  
Hisashi Yokoshiki ◽  
Akihiko Shimizu ◽  
Takeshi Mitsuhashi ◽  
Kohei Ishibashi ◽  
Tomoyuki Kabutoya ◽  
...  
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Galli ◽  
Y Bouali ◽  
C Laurin ◽  
A Gallard ◽  
A Hubert ◽  
...  

Abstract Background The non-invasive assessment of myocardial work (MW) by pressure-strain loops analysis (PSL) is a relative new tool for the evaluation of myocardial performance. Sacubitril/Valsartan is a treatment for heart failure with reduced ejection fraction (HFrEF) which has a spectacular effect on the reduction of cardiovascular events (MACEs). Purposes of this study were to evaluate 1) the short and medium term effect of Sacubitril/Valsartan treatment on MW parameters; 2) the prognostic value of MW in this specific group of patients. Methods 79 patients with HFrEF (mean age: 66±12 years; LV ejection fraction: 28±9%) were prospectively included in the study and treated with Sacubitril/Valsartan. Echocardiographic examination was performed at baseline, and after 6- and 12-month of therapy with Sacubitril/Valsartan. Results Sacubitril/Valsartan significantly increased global myocardial constructive work (CW) (1023±449 vs 1424±484 mmHg%, p<0.0001) and myocardial work efficiency (WE) [87 (78–90) vs 90 (86–95), p<0.0001]. During FU (2.6±0.9 years), MACEs occurred in 13 (16%) patients. After correction for LV size, LVEF and WE, CW was the only predictor of MACEs (Table 1). A CW<910 mmHg (AUC=0.81, p<0.0001, Figure 1A) identified patients at particularly increase risk of MACEs [HR 11.09 (1.45–98.94), p=0.002, log-rank test p<0.0001] (Figure 1 B). Conclusions In patients with HFrEF who receive a comprehensive background beta-blocker and mineral-corticoid receptor antagonist therapy, Sacubitril/Valsartan induces a significant improvement of myocardial CW and WE. In this population, the estimation of CW before the initiation of Sacubitril/Valsartan therapy allows the prediction of MACEs. Funding Acknowledgement Type of funding source: None


Author(s):  
Alessandro Malagoli ◽  
Luca Rossi ◽  
Alessia Zanni ◽  
Concetta Sticozzi ◽  
Massimo Francesco Piepoli ◽  
...  

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
J Melka ◽  
A Helbert ◽  
L Lesage ◽  
K Moreau ◽  
K Romariz ◽  
...  

Abstract Introduction Sudden death secondary to ventricular arrhythmias is common in HF patients, with no effective treatment available outside of implantable cardiac defibrillators. While animal models are essential for the discovery of anti-arrhythmic drugs, no reliable large animal HF models with associated ventricular arrhythmias have been described so far. Objectives We aimed at evaluating ventricular remodeling and arrhythmia susceptibility in an HF pig model with reduced ejection fraction (EF) following myocardial infarction (MI). Methods MI was induced in 53 male Göttingen minipigs (12–15 months, 20–25 kg) by coronary embolization in mid-left anterior descending and mid-left circumflex coronary arteries using endovascular coils. Seven other pigs underwent sham operation and were used as control. Two weeks after surgery, cardiac function was assessed by echocardiography, and animals were included based on EF<50% (n=15/53), assigned either to 12 weeks of vehicle (n=9) or perindopril (n=6, 1 mg/kg/d, per os) group. At the end of the study, their left ventricular (LV) electrical remodeling was studied by echocardiography/electrocardiography and a programmed-electrical stimulation protocol was performed to evaluate the susceptibility to develop ventricular arrhythmias. Results At the end of the study, animals in the vehicle group had a significant LV remodeling associated with a reduced EF (p<0.05 vs. sham, see table). This remodeling was associated with cardio-pulmonary congestion, significant increases in LV end-diastolic pressure, left atrial volume, and lung mass (all p<0.05 vs. sham, see table), fully prevented by perindopril treatment. They had also an electrical remodeling as evidenced by an increase in PR, QRS, and QTc intervals, as well as LV effective refractory period (+18%, 14%, 33%, and 13%, respectively, p<0.05, compared to sham animals). Electrical changes were mitigated by perindopril treatment (p=NS vs. sham). LV mechanical dispersion measured with speckle-tracking echocardiography was significantly increased in vehicle group (58±5 vs. 22±1 ms in sham group, respectively) as well as in perindopril group. Programmed-electrical stimulations induced in 6/8 vehicle animals either non-sustained (n=3) or sustained (n=2) ventricular tachycardia, or ventricular fibrillation (n=1). In sham group only 1/7 animal had a ventricular fibrillation. No inducible ventricular arrhythmia was observed in animals treated with Perindopril. Conclusion In this new pig model of congestive HF with reduced EF, LV remodeling was associated with electrical remodeling and susceptibility to develop arrhythmias. Chronic angiotensin-converting enzyme inhibitor treatment prevented congestion, mitigated electrical remodeling, and suppressed arrhythmia susceptibility. FUNDunding Acknowledgement Type of funding sources: Private company. Main funding source(s): Servier Research Institute - CardioVascular & Metabolic Diseases Center for Therapeutic Innovation Table 1


2015 ◽  
Vol 9 ◽  
pp. CMC.S21372 ◽  
Author(s):  
Muhammad Asrar Ul Haq ◽  
Cheng Yee Goh ◽  
Itamar Levinger ◽  
Chiew Wong ◽  
David L. Hare

Reduced exercise tolerance is an independent predictor of hospital readmission and mortality in patients with heart failure (HF). Exercise training for HF patients is well established as an adjunct therapy, and there is sufficient evidence to support the favorable role of exercise training programs for HF patients over and above the optimal medical therapy. Some of the documented benefits include improved functional capacity, quality of life (QoL), fatigue, and dyspnea. Major trials to assess exercise training in HF have, however, focused on heart failure with reduced ejection fraction (HFREF). At least half of the patients presenting with HF have heart failure with preserved ejection fraction (HFPEF) and experience similar symptoms of exercise intolerance, dyspnea, and early fatigue, and similar mortality risk and rehospitalization rates. The role of exercise training in the management of HFPEF remains less clear. This article provides a brief overview of pathophysiology of reduced exercise tolerance in HFREF and heart failure with preserved ejection fraction (HFPEF), and summarizes the evidence and mechanisms by which exercise training can improve symptoms and HF. Clinical and practical aspects of exercise training prescription are also discussed.


Sign in / Sign up

Export Citation Format

Share Document