Protective role of l ‐threonine against cadmium toxicity in Saccharomyces cerevisiae

Author(s):  
Linru Huang ◽  
Zhijia Fang ◽  
Jian Gao ◽  
Jingwen Wang ◽  
Yongbin Li ◽  
...  
2012 ◽  
Vol 5 (4) ◽  
pp. 192-200 ◽  
Author(s):  
Vivek Kumar Dwivedi ◽  
Anuj Bhatanagar ◽  
Manu Chaudhary

ABSTRACT We investigated the protective role of ceftriaxone plus sulbactam with VRP1034 (Elores) on hematological, lipid peroxidation, antioxidant enzymatic activities and Cd levels in the blood and tissues of cadmium exposed rats. Twenty-four male rats were divided into three groups of eight rats each. The control group received distilled water whereas group II received CdCl2 (1.5 mg/4 ml/body weight) through gastric gavage for 21 days. Group III received CdCl2 and was treated with ceftriaxone plus sulbactam with VRP1034 for 21 days. The hematological, biochemical, lipid per-oxidation levels and enzymatic parameters were measured in plasma and tissues (brain, liver and kidney) of all groups. The Cd, Zn and Fe levels were measured in blood and tissues of all groups. Our findings showed significantly decreased cadmium (p<0.001), malonaldialdehyde (p<0.001) and myloperoxidase (MPO) levels along with significantly increased hemoglobin (p<0.01), RBC (p<0.05), hematocrit (p<0.05) levels and all antioxidant enzymatic activities (SOD, CAT, GR, GPx) in plasma and tissues of ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. Delta aminolevulinate dehydratase (δ-ALAD) activity was significantly (p<0.001) increased in the blood of ceftriaxone plus sulbactam with VRP1034 treated group as compared with cadmium exposed group. The levels of hepatic and renal parameters were significantly (p<0.001) decreased in ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. These findings indicate that ceftriaxone plus sulbactam with VRP1034 acts as a potent free radical scavenger and exhibits metal chelating properties that reduce free radical mediated tissue injury and prevent dysfunction of hepatic and renal organs during metal intoxication.


2008 ◽  
Vol 153 (3) ◽  
pp. 1157-1164 ◽  
Author(s):  
I ARAUZ ◽  
S AFTON ◽  
K WROBEL ◽  
J CARUSO ◽  
J CORONA ◽  
...  

2017 ◽  
Vol 280 ◽  
pp. S179
Author(s):  
Gabriela Matuoka Chiocchetti ◽  
Sergi Puig Todolí ◽  
Dinoraz Vélez Pacios ◽  
Vicenta Devesa Péreza

2000 ◽  
Vol 72 (6) ◽  
pp. 1023-1026 ◽  
Author(s):  
Curtis D. Klaassen ◽  
Supratim Choudhuri

Acute Cd exposure produces liver injury, whereas chronic Cd exposure damages the kidney but not the liver. Previous experiments suggest that the low-molecular-weight, metal-binding protein metallothionein (MT) in liver protects against liver injury, but is responsible for the kidney injury observed after chronic Cd exposure. Thus, prior to the development of MT-transgenic and MT-knockout mice models, MT's role was always assumed to be a toxicological paradox, hepatoprotection but nephrotoxicity. The development of MT-transgenic and MT-knockout mice models has reconfirmed MT's protective role against Cd-induced hepatotoxicity, but it has challenged MT's suggested role in Cd-induced nephrotoxicity. In this communication, recent data using these genetically altered mice models indicate that MT protects against not only the Cd-induced hepatotoxicity, but also nephrotoxicity, hematotoxicity, immunotoxicity, and bone damage.


2020 ◽  
pp. 116056
Author(s):  
Safa Kechiche ◽  
Massimo Venditti ◽  
Latifa Knani ◽  
Karolina Jabłońska ◽  
Piotr Dzięgiel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document