Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions

2011 ◽  
Vol 32 (5) ◽  
pp. 695-709 ◽  
Author(s):  
Yonas Dibike ◽  
Terry Prowse ◽  
Barrie Bonsal ◽  
Laurent de Rham ◽  
Tuomo Saloranta
2011 ◽  
Vol 5 (4) ◽  
pp. 1775-1834 ◽  
Author(s):  
L. C. Brown ◽  
C. R. Duguay

Abstract. Lakes comprise a large portion of the surface cover in northern North America forming an important part of the cryosphere. The timing of lake ice phenological events (e.g. break-up/freeze-up) are useful indicators of climate variability and change, which is of particular relevance in environmentally sensitive areas such as the North American Arctic. Further alterations to the present day ice regime could result in major ecosystem changes, such as species shifts and the disappearance of perennial ice cover. Lake ice models are a valuable tool for examining the response of lake ice cover to changing climate conditions. The use of future climate scenario data in these models can provide information on the potential changes in ice phenology, ice thickness and composition. The Canadian Lake Ice Model (CLIMo) was used to simulate lake ice phenology across the North American Arctic from 1961–2100 using climate scenarios produced by the Canadian Regional Climate Model (CRCM). Results from the 1961–1990 time period were validated using 15 locations across the Canadian Arctic, with both in situ ice cover observations from the Canadian Ice Database as well as additional ice cover simulations using nearby weather station data. Projected changes to the ice cover using the 30 yr mean data between 1961–1990 and 2041–2070 suggest a shift towards shorter ice cover durations by an average of just over 3 weeks, with a 25 cm average reduction of the total ice thickness – varying based on location, lake depth and snow cover amounts.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Alexis L. Robinson ◽  
Sarah S. Ariano ◽  
Laura C. Brown

Lake ice models are a vital tool for studying the response of ice-covered lakes to changing climates throughout the world. The Canadian Lake Ice Model (CLIMo) is a one-dimensional freshwater ice cover model that simulates Arctic and sub-Arctic lake ice cover well. Modelling ice cover in temperate regions has presented challenges due to the differences in ice composition between northern and temperate region lake ice. This study presents a comparison of measured and modelled ice regimes, with a focus on refining CLIMo for temperate regions. The study sites include two temperate region lakes (MacDonald Lake and Clear Lake, Central Ontario) and two High Arctic lakes (Resolute Lake and Small Lake, Nunavut) where climate and ice cover information have been recorded over three seasons. The ice cover simulations were validated with a combination of time lapse imagery, field measurements of snow depth, snow density, ice thickness and albedo data, and historical ice records from the Canadian Ice Database (for Resolute Lake). Simulations of High Arctic lake ice cover show good agreement with previous studies for ice-on and ice-off dates (MAE 6 to 8 days). Unadjusted simulations for the temperate region lakes show good ice-on timing, but an under-representation of ice thickness, and earlier complete ice-off timing (~3 to 5 weeks). Field measurements were used to adjust the albedo values used in CLIMo, which resulted in improvements to both simulated ice thickness (~3 cm MAE compared to manual measurements), and ice-off timing, within 0 to 7 days (2 days MAE) of observations. These findings suggest regionally specific measurements of albedo can improve the accuracy of lake ice simulations, which further our knowledge of the response of temperate and High Arctic lake ice regimes to climate conditions.


2020 ◽  
Vol 47 (8) ◽  
Author(s):  
Joseph Mallalieu ◽  
Jonathan L. Carrivick ◽  
Duncan J. Quincey ◽  
Mark W. Smith
Keyword(s):  
Lake Ice ◽  

2013 ◽  
Vol 7 (4) ◽  
pp. 3783-3821 ◽  
Author(s):  
C. M. Surdu ◽  
C. R. Duguay ◽  
L. C. Brown ◽  
D. Fernández Prieto

Abstract. Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, to a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Analysis of available SAR data from 1991–2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner ice covers by 18–22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991–2011 period and by 21–38 cm (α = 0.001) from 1950–2011. The longer trend analysis (1950–2011) also shows a decrease in the ice cover duration by ∼24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7–18.6 days (α = 0.001).


2013 ◽  
Vol 1 (2) ◽  
pp. 71-75
Author(s):  
Choiński Adam ◽  
Kolendowicz Leszek ◽  
Pociask-Karteczka Joanna ◽  
Sobkowiak Leszek
Keyword(s):  
Lake Ice ◽  

1994 ◽  
Vol 40 (135) ◽  
pp. 283-292 ◽  
Author(s):  
Richard Heron ◽  
Ming-Ko Woo

AbstractThe decay of a lake-ice cover in the Canadian High Arctic was studied for 2 years. Melt at the upper surface accounted for 75% of the decrease in ice thickness, while 25% occurred at the ice–water interface. An energy-balance model, incorporating density reduction due to internal ice melt, was used to simulate the decay of the ice cover. The overall performance of the model was satisfactory despite periods when computed results differed from the observed ice decay. Energy-balance calculations indicated that the absorption of shortwave radiation within the ice provided 52% of the melt energy while 33 and 15% came from the surface-energy balance and heat flux from the water.


2014 ◽  
Vol 8 (1) ◽  
pp. 167-180 ◽  
Author(s):  
C. M. Surdu ◽  
C. R. Duguay ◽  
L. C. Brown ◽  
D. Fernández Prieto

Abstract. Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, in a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of European remote sensing satellite ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Given the large area covered by these lakes, changes in the regional climate and weather are related to regime shifts in the ice cover of the lakes. Analysis of available SAR data from 1991 to 2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner ice covers by 18–22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991–2011 period and by 21–38 cm (α = 0.001) from 1950 to 2011. The longer trend analysis (1950–2011) also shows a decrease in the ice cover duration by ~24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7–18.6 days (α = 0.001).


2010 ◽  
Vol 34 (5) ◽  
pp. 671-704 ◽  
Author(s):  
Laura C. Brown ◽  
Claude R. Duguay

This paper reviews the current state of knowledge pertaining to the interactions of lake ice and climate. Lake ice has been shown to be sensitive to climate variability through observations and modelling, and both long-term and short-term trends have been identified from ice records. Ice phenology trends have typically been associated with variations in air temperatures while ice thickness trends tend to be associated more to changes in snow cover. The role of ice cover in the regional climate is less documented and with longer ice-free seasons possible as a result of changing climate conditions, especially at higher latitudes, the effects of lakes on their surrounding climate (such as increased evaporation, lake-effect snow and thermal moderation of surrounding areas, for example) can be expected to become more prominent. The inclusion of lakes and lake ice in climate modelling is an area of increased attention in recent studies. An important step in improving predictions of ice conditions in models is the assimilation of remote sensing data in areas where in-situ data is lacking, or non-representative of the lake conditions. The ability to accurately represent ice cover on lakes will be an important step in the improvement of global circulation models, regional climate models and numerical weather forecasting.


1994 ◽  
Vol 40 (135) ◽  
pp. 283-292 ◽  
Author(s):  
Richard Heron ◽  
Ming-Ko Woo

AbstractThe decay of a lake-ice cover in the Canadian High Arctic was studied for 2 years. Melt at the upper surface accounted for 75% of the decrease in ice thickness, while 25% occurred at the ice–water interface. An energy-balance model, incorporating density reduction due to internal ice melt, was used to simulate the decay of the ice cover. The overall performance of the model was satisfactory despite periods when computed results differed from the observed ice decay. Energy-balance calculations indicated that the absorption of shortwave radiation within the ice provided 52% of the melt energy while 33 and 15% came from the surface-energy balance and heat flux from the water.


Sign in / Sign up

Export Citation Format

Share Document