scholarly journals The Influence of Snow and Ice Albedo towards Improved Lake Ice Simulations

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Alexis L. Robinson ◽  
Sarah S. Ariano ◽  
Laura C. Brown

Lake ice models are a vital tool for studying the response of ice-covered lakes to changing climates throughout the world. The Canadian Lake Ice Model (CLIMo) is a one-dimensional freshwater ice cover model that simulates Arctic and sub-Arctic lake ice cover well. Modelling ice cover in temperate regions has presented challenges due to the differences in ice composition between northern and temperate region lake ice. This study presents a comparison of measured and modelled ice regimes, with a focus on refining CLIMo for temperate regions. The study sites include two temperate region lakes (MacDonald Lake and Clear Lake, Central Ontario) and two High Arctic lakes (Resolute Lake and Small Lake, Nunavut) where climate and ice cover information have been recorded over three seasons. The ice cover simulations were validated with a combination of time lapse imagery, field measurements of snow depth, snow density, ice thickness and albedo data, and historical ice records from the Canadian Ice Database (for Resolute Lake). Simulations of High Arctic lake ice cover show good agreement with previous studies for ice-on and ice-off dates (MAE 6 to 8 days). Unadjusted simulations for the temperate region lakes show good ice-on timing, but an under-representation of ice thickness, and earlier complete ice-off timing (~3 to 5 weeks). Field measurements were used to adjust the albedo values used in CLIMo, which resulted in improvements to both simulated ice thickness (~3 cm MAE compared to manual measurements), and ice-off timing, within 0 to 7 days (2 days MAE) of observations. These findings suggest regionally specific measurements of albedo can improve the accuracy of lake ice simulations, which further our knowledge of the response of temperate and High Arctic lake ice regimes to climate conditions.

2020 ◽  
Author(s):  
Alexis L. Robinson ◽  
Sarah S. Ariano ◽  
Laura C. Brown

Abstract. Lake ice models can be used to study the latitudinal differences of current and projected changes in ice covered lakes under a changing climate. The Canadian Lake Ice Model (CLIMo) is a one-dimensional freshwater ice cover model that simulates Arctic and sub-Arctic lake ice cover well. Modelling ice cover in temperate regions has presented challenges due to the differences in composition between northern and temperate ice. This study presents a comparison of measured and modelled ice regimes, with a focus on refining CLIMo for temperate regions. The study sites include two temperate region lakes (MacDonald Lake and Clear Lake, Central Ontario) and two High Arctic lakes (Resolute Lake and Small Lake, Nunavut) where climate and ice cover information have been recorded over three seasons. The ice cover simulations were validated with a combination of time lapse imagery, field measurements of snow depth, snow density, ice thickness and albedo data, and historical ice records from the Canadian Ice Database (for Resolute Lake). Simulations of the High Arctic ice cover show good agreement with previous studies for ice-on and ice-off dates (MAE 6 to 8 days). Unadjusted simulations for the temperate region lakes show both an underestimation in ice thickness (~ 4 to 18 cm) and ice-off timing (~ 25 to 30 days). Field measurements were used to adjust the albedo parameterization used in CLIMo, which resulted in improvements to both simulated ice thickness, within 0.1 cm to 10 cm of manual measurements, and ice-off timing, within 1 to 7 days of observations. These findings suggest regionally specific measurements of albedo can improve the accuracy of lake ice simulations. These results further our knowledge regarding of the response of temperate and High Arctic lake ice regimes to climate conditions.


2011 ◽  
Vol 32 (5) ◽  
pp. 695-709 ◽  
Author(s):  
Yonas Dibike ◽  
Terry Prowse ◽  
Barrie Bonsal ◽  
Laurent de Rham ◽  
Tuomo Saloranta

2013 ◽  
Vol 7 (4) ◽  
pp. 3783-3821 ◽  
Author(s):  
C. M. Surdu ◽  
C. R. Duguay ◽  
L. C. Brown ◽  
D. Fernández Prieto

Abstract. Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, to a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Analysis of available SAR data from 1991–2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner ice covers by 18–22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991–2011 period and by 21–38 cm (α = 0.001) from 1950–2011. The longer trend analysis (1950–2011) also shows a decrease in the ice cover duration by ∼24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7–18.6 days (α = 0.001).


2015 ◽  
Vol 9 (6) ◽  
pp. 6223-6274
Author(s):  
C. M. Surdu ◽  
C. R. Duguay ◽  
D. Fernández Prieto

Abstract. Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than ten months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions – polar oases – with longer growing seasons, greater biological production and diversity, are confined from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997–2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath and Landsat acquisitions were analysed. Results show that melt onset (MO) occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer-ice minimum and water-clear-of-ice dates (WCI), with greater changes being observed for polar-oasis lakes (9–24 days earlier WCI dates for lakes located in polar oases and 2–20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes that preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.


1994 ◽  
Vol 40 (135) ◽  
pp. 283-292 ◽  
Author(s):  
Richard Heron ◽  
Ming-Ko Woo

AbstractThe decay of a lake-ice cover in the Canadian High Arctic was studied for 2 years. Melt at the upper surface accounted for 75% of the decrease in ice thickness, while 25% occurred at the ice–water interface. An energy-balance model, incorporating density reduction due to internal ice melt, was used to simulate the decay of the ice cover. The overall performance of the model was satisfactory despite periods when computed results differed from the observed ice decay. Energy-balance calculations indicated that the absorption of shortwave radiation within the ice provided 52% of the melt energy while 33 and 15% came from the surface-energy balance and heat flux from the water.


1994 ◽  
Vol 40 (135) ◽  
pp. 283-292 ◽  
Author(s):  
Richard Heron ◽  
Ming-Ko Woo

AbstractThe decay of a lake-ice cover in the Canadian High Arctic was studied for 2 years. Melt at the upper surface accounted for 75% of the decrease in ice thickness, while 25% occurred at the ice–water interface. An energy-balance model, incorporating density reduction due to internal ice melt, was used to simulate the decay of the ice cover. The overall performance of the model was satisfactory despite periods when computed results differed from the observed ice decay. Energy-balance calculations indicated that the absorption of shortwave radiation within the ice provided 52% of the melt energy while 33 and 15% came from the surface-energy balance and heat flux from the water.


2011 ◽  
Vol 5 (4) ◽  
pp. 1775-1834 ◽  
Author(s):  
L. C. Brown ◽  
C. R. Duguay

Abstract. Lakes comprise a large portion of the surface cover in northern North America forming an important part of the cryosphere. The timing of lake ice phenological events (e.g. break-up/freeze-up) are useful indicators of climate variability and change, which is of particular relevance in environmentally sensitive areas such as the North American Arctic. Further alterations to the present day ice regime could result in major ecosystem changes, such as species shifts and the disappearance of perennial ice cover. Lake ice models are a valuable tool for examining the response of lake ice cover to changing climate conditions. The use of future climate scenario data in these models can provide information on the potential changes in ice phenology, ice thickness and composition. The Canadian Lake Ice Model (CLIMo) was used to simulate lake ice phenology across the North American Arctic from 1961–2100 using climate scenarios produced by the Canadian Regional Climate Model (CRCM). Results from the 1961–1990 time period were validated using 15 locations across the Canadian Arctic, with both in situ ice cover observations from the Canadian Ice Database as well as additional ice cover simulations using nearby weather station data. Projected changes to the ice cover using the 30 yr mean data between 1961–1990 and 2041–2070 suggest a shift towards shorter ice cover durations by an average of just over 3 weeks, with a 25 cm average reduction of the total ice thickness – varying based on location, lake depth and snow cover amounts.


2016 ◽  
Vol 10 (3) ◽  
pp. 941-960 ◽  
Author(s):  
Cristina M. Surdu ◽  
Claude R. Duguay ◽  
Diego Fernández Prieto

Abstract. Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions – polar oases – with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997–2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9–24 days earlier WCI dates for lakes located in polar oases and 2–20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.


ARCTIC ◽  
1989 ◽  
Vol 42 (4) ◽  
Author(s):  
W.P. Adams ◽  
P.T. Doran ◽  
M. Ecclestone ◽  
C.M. Kingsbury ◽  
C.J. Allan

2016 ◽  
Vol 47 (4) ◽  
pp. 782-798
Author(s):  
Inese Latkovska ◽  
Elga Apsīte ◽  
Didzis Elferts

The ice regime of rivers is considered a sensitive indicator of climate change. This paper summarises the results of research on the long-term changes in the ice regime parameters under changing climate conditions and their regional peculiarities in Latvia from 1945 to 2012. The ice cover duration on Latvian rivers has decreased during recent decades. The research results demonstrated that there is a positive trend as regards the formation of the ice cover and in 31.8% of the cases the trend is statistically significant at p < 0.05. As regards the breaking up of ice, there is a statistically significant negative trend in 93.2% of the cases at p < 0.05. This indicates an earlier ice break-up date, which in turn, displays a strong correlation with the increase of the air temperature. The same pattern applies to the reduction of the length of ice cover (a statistically significant trend in 86.4% of the cases at p < 0.05). In approximately 60% of the cases, there is a statistically significant reduction of the ice thickness. The estimated winter severity index indicates warmer winters over the last 20 years as well as regional differences in the west–east direction.


Sign in / Sign up

Export Citation Format

Share Document