An event synchronization method to link heavy rainfall events and large-scale atmospheric circulation features

2017 ◽  
Vol 38 (3) ◽  
pp. 1421-1437 ◽  
Author(s):  
Federico Conticello ◽  
Francesco Cioffi ◽  
Bruno Merz ◽  
Upmanu Lall
Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2020 ◽  
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc ◽  
Bin Guan

Abstract. The role of the large scale atmospheric circulation and atmospheric rivers (ARs) in producing extreme flooding and heavy rainfall events in the lower part of Rhine River catchment area is examined in this study. Analysis of the largest 10 floods in the lower Rhine, between 1817–2015, indicate that all these extreme flood peaks have been preceded up to 7 days in advance by intense moisture transport from the tropical North Atlantic basin, in the form of narrow bands, also know as atmospheric rivers. The influence of ARs on the Rhine River flood events is done via the prevailing large-scale atmospheric circulation. Most of the ARs associated with these flood events are embedded in the trailing fronts of the extratropical cyclones. The typical large scale atmospheric circulation leading to heavy rainfall and flooding in the lower Rhine is characterized by a low pressure center south of Greenland which migrates towards Europe and a stable high pressure center over the northern part of Africa and southern part of Europe. The days preceding the flood peaks, lower (upper) level convergence (divergence) is observed over the analyzed region, which is an indication of strong vertical motions and heavy rainfall. The results presented in this study offer new insights regarding the importance of tropical moisture transport as driver of extreme flooding in the lower part of Rhine River catchment area and we show for the first time that ARs are an useful tool for the identification of potential damaging floods inland Europe.


2020 ◽  
Author(s):  
Giuseppe Cipolla ◽  
Antonio Francipane ◽  
Leonardo Noto

<p>Since the impacts of climate change on the environment have been constantly rising over the last decades, scientists have paid much attention to understanding the effects of this phenomenon. Climate change leads to different kinds of extremes, such as heavy rainfall events, characterized by short duration and high intensity, and drought, which can cause the problem of water scarcity over a certain area. These types of extreme events cause several damages for the affected areas since they can result in loss of human lives and economic damages. In particular, heavy rainfall events, which are often associated with convective precipitation because of their characteristics, may result in flash floods, especially when they hit small catchments with low times of concentration, thus causing economic damages and, more relevantly, human lives losses.</p><p>The increasing occurrence of heavy rainfall events in many areas of Europe, also in Italy, over the last few years, has contributed to raising the importance of understanding which factors could be recognized as drivers of these events. In this perspective, it is possible to identify in atmospheric circulation one of the causes of severe rainfall events occurrence since some air fluxes, generated from certain schemes of atmospheric circulation, could lead to the accumulation of moisture within a certain volume of the atmosphere, hence to the occurrence of rainfall.</p><p>Since even the Sicily (Italy) has been experimenting heavy rainfall events and consequent flash floods and urban floods in the last years, this work aims to find out a relationship between some weather circulation patterns, developed by the UK Met Office, and the rainfall Annual MAXima (AMAX) for the Sicily, recorded by the rain gauge network of Autorità di Bacino - Regione Siciliana. The possible connection between AMAX and WPs has been investigated in order to define some specific schemes of atmospheric circulation that are responsible for leading to the occurrence of AMAX in Sicily. In order to do this, a database containing the AMAX of all the available gauges for the Sicily has been used. A distinction between AMAX occurred in summer and winter season and their related WPs has been performed as well, with the goal to understand the possible influence of WPs on the summer and winter AMAX. Furthermore, in order to distinguish convective from stratiform AMAX, some analyses on reanalysis data, namely the CAPE and the Vertical Integral of Divergence of Moisture Flux (VIDMF), have been done.</p>


2020 ◽  
Vol 148 (10) ◽  
pp. 4117-4141
Author(s):  
Feng Hsiao ◽  
Yi-Leng Chen ◽  
David Eugene Hitzl

AbstractShort-lived afternoon heavy rainfall events may form over central Oahu during seasonal transition periods (June and October) under favorable large-scale settings. These include a deep moist layer with relatively high precipitable water (>40 mm), blocking pattern in midlatitudes with a northeast–southwest moist tongue from low latitudes ahead of an upper-level trough, absence of a trade wind inversion, and weak (<3 m s−1) low-level winds. Our high-resolution (1.5 km) model results show that immediately before the storm initiation, daytime land surface heating deepens the mixed layer over central Oahu and the top of the mixed layer reaches the lifting condensation level. Meanwhile, the development of onshore/sea-breeze flows, driven by land–sea thermal contrast, brings in moist maritime air over the island interior. Finally, convergence of onshore flows over central Oahu provides the localized lifting required for the release of instability. Based on synoptic and observational analyses, nowcasting with a lead time of 2–3 h ahead of this type of event is possible. In the absence of orographic effects after removing model topography, processes that lead to heavy rainfall are largely unchanged, and subsequent development of heavy showers over central Oahu are still simulated. However, when surface heat and moisture fluxes are turned off, convective cells are not simulated in the area. These results indicate that daytime heating is crucial for the development of this type of heavy rainfall event under favorable large-scale settings.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1468 ◽  
Author(s):  
Aldo Greco ◽  
Davide Luciano De Luca ◽  
Elenio Avolio

An in-depth analysis of historical heavy rainfall fields clearly constitutes an important aspect in many related topics: as examples, mesoscale models for early warning systems and the definition of design event scenarios can be improved, with the consequent upgrading in the prediction of induced phenomena (mainly floods and landslides) into specific areas of interest. With this goal, in this work the authors focused on Calabria region (southern Italy) and classified the main precipitation systems through the analysis of selected heavy rainfall events from high resolution rain gauge network time series. Moreover, the authors investigated the relationships among the selected events and the main synoptic atmospheric patterns derived by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis dataset, in order to assess the possible large-scale scenarios which can induce heavy rainfall events in the study area. The obtained results highlighted: (i) the importance of areal reduction factors, rainfall intensities and amounts in order to discriminate the investigated precipitations systems for the study area; (ii) the crucial role played by the position of the averaged low-pressure areas over the Mediterranean for the synoptic systems, and by low-level temperature for the convective systems.


2014 ◽  
Vol 142 (7) ◽  
pp. 2436-2463 ◽  
Author(s):  
Chuan-Chi Tu ◽  
Yi-Leng Chen ◽  
Ching-Sen Chen ◽  
Pay-Liam Lin ◽  
Po-Hsiung Lin

Abstract Two contrasting localized heavy rainfall events during Taiwan’s early summer rainy season with the daily rainfall maximum along the windward mountain range and coast were studied and compared using a combination of observations and numerical simulations. Both events occurred under favorable large-scale settings including the existence of a moisture tongue from the tropics. For the 31 May case, heavy rainfall occurred in the afternoon hours over the southwestern windward slopes after a shallow surface front passed central Taiwan. The orographic lifting of the prevailing warm, moist, west-southwesterly flow aloft, combined with a sea breeze–upslope flow at the surface provided the localized lifting needed for the development of heavy precipitation. On 16 June before sunrise, pronounced orographic blocking of the warm, moist, south-southwesterly flow occurred because of the presence of relatively cold air at low levels as a result of nocturnal and rain evaporative cooling. As a result, convective systems intensified as they moved toward the southwestern coast. During the daytime, the cold pool remained over southwestern Taiwan without the development of onshore/upslope flow. Furthermore, with a south-southwesterly flow aloft parallel to terrain contours, orographic lifting aloft was absent and preexisting rain cells offshore diminished after they moved inland. Over northern Taiwan on the lee side, a sea breeze/onshore flow developed in the afternoon hours, resulting in heavy thundershowers. These results demonstrate the importance of diurnal and local effects on determining the location and timing of the occurrences of localized heavy precipitation during the early summer rainy season over Taiwan.


2021 ◽  
Vol 13 (13) ◽  
pp. 2500
Author(s):  
Douglas Miller ◽  
Malarvizhi Arulraj ◽  
Ralph Ferraro ◽  
Christopher Grassotti ◽  
Bob Kuligowski ◽  
...  

Two heavy rainfall events occurring in early 2020 brought flooding, flash flooding, strong winds, and tornadoes to the southern Appalachian Mountains. Part I of the study examined large-scale atmospheric contributions to the atmospheric river-influenced events and subsequent societal impacts. Contrary to expectations based on previous work in this region, the event having a lower event accumulation and shorter duration resulted in a greater number of triggered landslides and prolonged downstream flooding outside of the mountains. One purpose of this study (Part II) is to examine the local atmospheric conditions contributing to the rather unusual surface response to the shorter duration heavy rainfall event of 12–13 April 2020. A second purpose of this study is to investigate the utility of several spaced-based QPE and vertical atmospheric profile methods in illuminating some of the atmospheric conditions unique to the April event. The embedded mesoscale convective elements in the warm sector of the April event were larger and of longer duration than of the other event in February 2020, leading to sustained periods of convective rain rates. The environment of the April event was convectively unstable, and the resulting available potential energy was sustained by relatively dry airstreams at the 700 hPa level, continuously overriding the moist air stream at low levels attributed to an atmospheric river.


2021 ◽  
Vol 13 (13) ◽  
pp. 2452
Author(s):  
Douglas Miller ◽  
John Forsythe ◽  
Sheldon Kusselson ◽  
William Straka III ◽  
Jifu Yin ◽  
...  

Two heavy rainfall events occurring in early 2020 brought flooding, flash flooding, strong winds and tornadoes to the southern Appalachian Mountains. The atmospheric river-influenced events qualified as extreme (top 2.5%) rain events in the archives of two research-grade rain gauge networks located in two different river basins. The earlier event of 5–7 February 2020 was an event of longer duration that caused significant flooding in close proximity to the mountains and had the higher total accumulation observed by the two gauge networks, compared to the later event of 12–13 April 2020. However, its associated downstream flooding response and number of landslides (two) were muted compared to the April event (21). The purpose of this study is to understand differences in the surface response of the two events, primarily by examining the large-scale weather pattern and available space-based observations. Both storms were preceded by anticyclonic Rossby wave breaking events that led to a highly amplified 500 hPa wave during the February storm (a broad continent-wide 500 hPa cyclone during the April storm) in which the accompanying low-level cyclone moved slowly (rapidly). Model analyses and space-based water vapor observations of the two events indicated a deep sub-tropical moisture source during the February storm (converging sub-tropical low-level moisture streams and a dry mid-tropospheric layer during the April storm). Systematic differences of environmental stability were reflected in differences of storm-averaged rain rate intensity, with large-scale atmospheric structures favoring higher intensities during the April storm. Space-based observations of post-storm surface conditions suggested antecedent soil moisture conditioned by rainfall of the February event made the widespread triggering of landslides possible during the higher intensity rains of the April event, a period exceeding the 30 day lag explored in Miller et al. (2019).


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Mary-Jane M. Bopape ◽  
David Waitolo ◽  
Robert S. Plant ◽  
Elelwani Phaduli ◽  
Edson Nkonde ◽  
...  

Weather forecasting relies on the use of numerical weather prediction (NWP) models, whose resolution is informed by the available computational resources. The models resolve large scale processes, while subgrid processes are parametrized. One of the processes that is parametrized is turbulence which is represented in planetary boundary layer (PBL) schemes. In this study, we evaluate the sensitivity of heavy rainfall events over Zambia to four different PBL schemes in the Weather Research and Forecasting (WRF) model using a parent domain with a 9 km grid length and a 3 km grid spacing child domain. The four PBL schemes are the Yonsei University (YSU), nonlocal first-order medium-range forecasting (MRF), University of Washington (UW) and Mellor–Yamada–Nakanishi–Niino (MYNN) schemes. Simulations were done for three case studies of extreme rainfall on 17 December 2016, 21 January 2017 and 17 April 2019. The use of YSU produced the highest rainfall peaks across all three cases; however, it produced performance statistics similar to UW that are higher than those of the two other schemes. These statistics are not maintained when adjusted for random hits, indicating that the extra events are mainly random rather than being skillfully placed. UW simulated the lowest PBL height, while MRF produced the highest PBL height, but this was not matched by the temperature simulation. The YSU and MYNN PBL heights were intermediate at the time of the peak; however, MYNN is associated with a slower decay and higher PBL heights at night. WRF underestimated the maximum temperature during all cases and for all PBL schemes, with a larger bias in the MYNN scheme. We support further use of the YSU scheme, which is the scheme selected for the tropical suite in WRF. The different simulations were in some respects more similar to one another than to the available observations. Satellite rainfall estimates and the ERA5 reanalysis showed different rainfall distributions, which indicates a need for more ground observations to assist with studies like this one.


Sign in / Sign up

Export Citation Format

Share Document