Impact of different types of ENSO conditions on seasonal precipitation and streamflow in the Southeastern United States

2017 ◽  
Vol 38 (3) ◽  
pp. 1438-1451 ◽  
Author(s):  
Hui Wang ◽  
Tirusew Asefa
2014 ◽  
Vol 27 (22) ◽  
pp. 8384-8411 ◽  
Author(s):  
Di Tian ◽  
Christopher J. Martinez ◽  
Wendy D. Graham ◽  
Syewoon Hwang

Abstract This study compared two types of approaches to downscale seasonal precipitation (P) and 2-m air temperature (T2M) forecasts from the North American Multimodel Ensemble (NMME) over the states of Alabama, Georgia, and Florida in the southeastern United States (SEUS). Each NMME model forecast was evaluated. Two multimodel ensemble (MME) schemes were tested by assigning equal weight to all forecast members (SuperEns) or by assigning equal weights to each model’s ensemble mean (MeanEns). One type of downscaling approach used was a model output statistics (MOS) method, which was based on direct spatial disaggregation and bias correction of the NMME P and T2M forecasts using the quantile mapping technique [spatial disaggregation with bias correction (SDBC)]. The other type of approach used was a perfect prognosis (PP) approach using nonparametric locally weighted polynomial regression (LWPR) models, which used the NMME forecasts of Niño-3.4 sea surface temperatures (SSTs) to predict local-scale P and T2M. Both SDBC and LWPR downscaled P showed skill in winter but no skill or limited skill in summer at all lead times for all NMME models. The SDBC downscaled T2M were skillful only for the Climate Forecast System, version 2 (CFSv2), model even at far lead times, whereas the LWPR downscaled T2M showed limited skill or no skill for all NMME models. In many cases, the LWPR method showed significantly higher skill than the SDBC. After bias correction, the SuperEns mostly showed higher skill than the MeanEns and most of the single models, but its skill did not outperform the best single model.


2022 ◽  
Author(s):  
Xiaotian Xu ◽  
Xu Feng ◽  
Haipeng Lin ◽  
Peng Zhang ◽  
Shaojian Huang ◽  
...  

Abstract. High mercury wet deposition in southeastern United States has been noticed for many years. Previous studies came up with a theory that it was associated with high-altitude divalent mercury scavenged by convective precipitation. Given the coarse resolution of previous models (e.g. GEOS-Chem), this theory is still not fully tested. Here we employed a newly developed WRF-GEOS-Chem (WRF-GC) model implemented with mercury simulation. We conduct extensive model benchmarking by comparing WRF-GC with different resolutions (from 50 km to 25 km) to GEOS-Chem output (4° × 5°) and data from Mercury Deposition Network (MDN) in July–September 2013. The comparison of mercury wet deposition from two models both present high mercury wet deposition in southeastern United States. We divided simulation results by heights, different types of precipitation and combination of these two variations together and find most of mercury wet deposition concentrates on higher space and caused by convective precipitation. Therefore, we conclude that it is the deep convection caused enhanced mercury wet deposition in the southeastern United States.


1981 ◽  
Vol 59 (5) ◽  
pp. 683-688 ◽  
Author(s):  
R. W. Rose Jr. ◽  
C. Gerald Van Dyke ◽  
C. B. Davey

Three different types of ectomycorrhizae found in the Southeastern United States on Eucalyptus nova-anglica and identified as being formed by Cenococcum geophilum, Pisolithus tinctorius, and Scleroderma geaster were examined with a scanning electron microscope (SEM). In overall appearance the three types of mycorrhizae could be distinguished easily from each other, particularly C. geophilum, which had a relatively smooth, undulate surface in comparison with the other two types. Detailed descriptions and comparisons of these ectomycorrhizae are given and the value of SEM in characterizing ectomycorrhizae is discussed


2013 ◽  
Vol 26 (3) ◽  
pp. 1047-1062 ◽  
Author(s):  
Olivier P. Prat ◽  
Brian R. Nelson

Abstract The objective of this paper is to characterize the precipitation amounts originating from tropical cyclones (TCs) in the southeastern United States during the tropical storm season from June to November. Using 12 years of precipitation data from the Tropical Rainfall Measurement Mission (TRMM), the authors estimate the TC contribution on the seasonal, interannual, and monthly precipitation budget using TC information derived from the International Best Track Archive for Climate Stewardship (IBTrACS). Results derived from the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42 showed that TCs accounted for about 7% of the seasonal precipitation total from 1998 to 2009. Rainfall attributable to TCs was found to contribute as much as 8%–12% for inland areas located between 150 and 300 km from the coast and up to 15%–20% for coastal areas from Louisiana to the Florida Panhandle, southern Florida, and coastal Carolinas. The interannual contribution varied from 1.3% to 13.8% for the period 1998–2009 and depended on the TC seasonal activity, TC intensity, and TC paths as they traveled inland. For TCs making landfall, the rainfall contribution could be locally above 40% and, on a monthly basis, TCs contributed as much as 20% of September rainfall. The probability density functions of rainfall attributable to tropical cyclones showed that the percentage of rainfall associated with TC over land increased with increasing rain intensity and represent about 20% of heavy rainfall (>20 mm h−1), while TCs account for less than 5% of all seasonal precipitation events.


2009 ◽  
Vol 35 (2-3) ◽  
pp. 449-471 ◽  
Author(s):  
Young-Kwon Lim ◽  
Steven Cocke ◽  
D. W. Shin ◽  
Justin T. Schoof ◽  
Timothy E. LaRow ◽  
...  

2019 ◽  
Author(s):  
Jorge Noguera

This study was conducted to determine the effectiveness of a novel mind perception manipulation. Mind perception is currently theorized to be an essential aspect of a number of human social psychological processes. Thus, a successful manipulation would allow for the causal study of those processes. This manipulation was created in an attempt to explore the downstream impact of mind perception on the endorsement of conspiracy theories. Conspiracy theories are steadily becoming more and more prominent in social discourse. Endorsement of conspiracy theories are beginning to show real world ramifications such as a danger to human health (e.g., in the anti-vaccination movement). A sample of college students (valid N = 53) from a large rural institution in the southeastern United States participated for course credit. These participants completed a mind perception pretest, were randomly assigned to either the manipulation in question (in which participants are asked to consider the ‘mind’ of several targets and write their thoughts about them) or the control condition, and then they completed a posttest. The mixed ANOVA revealed that the interaction term between Time and Condition was not significant. Because the manipulation did not work, other analyses were aborted, in accord with the pre-registration. My Discussion focuses on the procedures and potential shortcomings of this manipulation, in an effort to lay the groundwork for a successful one.


Sign in / Sign up

Export Citation Format

Share Document