Constituents from Gymnema sylvestre Leaves. II. Nitrogenous compounds

1967 ◽  
Vol 56 (6) ◽  
pp. 732-736 ◽  
Author(s):  
Joseph E. Sinsheimer ◽  
Hugh M. McIlhenny
Agronomie ◽  
2003 ◽  
Vol 23 (5-6) ◽  
pp. 503-510 ◽  
Author(s):  
Florence Paynel ◽  
Jean Bernard Cliquet

2017 ◽  
Vol 23 (11) ◽  
pp. 1667-1676 ◽  
Author(s):  
Pragya Tiwari ◽  
Khurshid Ahmad ◽  
Mohammad Hassan Baig
Keyword(s):  

2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


Author(s):  
Nishtha R. Mahida ◽  
G. . Mandali ◽  
Vijaysinh V. Sindha ◽  
S. K. Raval

Gymnema sylvestre of the family Asclepiadaceae is one of the most important medicinal plants of the central eco-region. It is popularly known as Gurmar, which means “sugar killer”. Extract of leaves is reported to have tannins, gum, flavonoids, proteins and saponins. It has displayed a wide array of pharmacological activities. This study was aimed to investigate the antidiabetic and hypolipidemic effects of Gymnema sylvestre extract in experimentally induced diabetes in rats. Diabetes was produced in adult Wistar rats with single dose of streptozotocin (STZ) @ 60 mg/kg b.wt. intraperitoneally. After the confirmation of diabetes on 7th day (sugar >200 mg/dl), alcoholic and aqueous extracts of G. sylvestre (400 mg/kg) were administered orally to the experimental rats from 8th day and continued for 42 days thereafter. The antidiabetic and hypolipidemic activity was estimated by measuring blood glucose, lipid profile and histopathological examination of various tissues from all the groups. Administration of STZ resulted in a significant (p less than 0.01) increase in blood glucose and lipid profile and histopathological alterations in Diabetic control group as compared to healthy control group. Gymnema treatment demonstrated significant (p less than 0.01) antidiabetic effect indicated by restoration of blood glucose compared to STZ control group. The study concluded that extracts of Gymnema sylvestre improved the altered glucose and lipid profile in diabetic rats, suggesting that the Gymnema Sylvestre extracts exhibit the antidiabetic and hypolipidemic activity.


Author(s):  
Kuldeepsingh A. Kalariya ◽  
Ram Prasnna Meena ◽  
Lipi Poojara ◽  
Deepa Shahi ◽  
Sandip Patel

Abstract Background Squalene synthase (SQS) is a rate-limiting enzyme necessary to produce pentacyclic triterpenes in plants. It is an important enzyme producing squalene molecules required to run steroidal and triterpenoid biosynthesis pathways working in competitive inhibition mode. Reports are available on information pertaining to SQS gene in several plants, but detailed information on SQS gene in Gymnema sylvestre R. Br. is not available. G. sylvestre is a priceless rare vine of central eco-region known for its medicinally important triterpenoids. Our work aims to characterize the GS-SQS gene in this high-value medicinal plant. Results Coding DNA sequences (CDS) with 1245 bp length representing GS-SQS gene predicted from transcriptome data in G. sylvestre was used for further characterization. The SWISS protein structure modeled for the GS-SQS amino acid sequence data had MolProbity Score of 1.44 and the Clash Score 3.86. The quality estimates and statistical score of Ramachandran plots analysis indicated that the homology model was reliable. For full-length amplification of the gene, primers designed from flanking regions of CDS encoding GS-SQS were used to get amplification against genomic DNA as template which resulted in approximately 6.2-kb sized single-band product. The sequencing of this product through NGS was carried out generating 2.32 Gb data and 3347 number of scaffolds with N50 value of 457 bp. These scaffolds were compared to identify similarity with other SQS genes as well as the GS-SQSs of the transcriptome. Scaffold_3347 representing the GS-SQS gene harbored two introns of 101 and 164 bp size. Both these intronic regions were validated by primers designed from adjoining outside regions of the introns on the scaffold representing GS-SQS gene. The amplification took place when the template was genomic DNA and failed when the template was cDNA confirmed the presence of two introns in GS-SQS gene in Gymnema sylvestre R. Br. Conclusion This study shows GS-SQS gene was very closely related to Coffea arabica and Gardenia jasminoides and this gene harbored two introns of 101 and 164 bp size.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 940
Author(s):  
Michael G. Kontominas ◽  
Anastasia V. Badeka ◽  
Ioanna S. Kosma ◽  
Cosmas I. Nathanailides

Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.


Sign in / Sign up

Export Citation Format

Share Document