scholarly journals Potential Biological markers by DNA ‐based tools for determination of Greek PDO geographical origin and authenticity: “Avgotaracho Mesolonghiou” and “Vostizza currant”

JSFA reports ◽  
2021 ◽  
Author(s):  
Maria‐Eleni Dimitrakopoulou ◽  
Chrysoula Kotsalou ◽  
Maria Koudouna ◽  
Eleftheria Katechaki ◽  
Apostolos Vantarakis
2015 ◽  
pp. 40-43 ◽  
Author(s):  
Andreas G. Degenhardt

The isotope ratios of water, organic matter and micronutrients from food are dependent on the circumstances and sites of their origin and production. Analytical methods, based on mass spectrometry, are established for routine determination of isotopes. Differentiation between metabolic pathways of C3 and C4 plants is realizable by determination 13C/12C ratios which can distinguish and identify sucrose from pure beet (Beta vulgaris) and pure cane (Saccharum officinarum). Influenced by the worldwide hydrological cycle the isotope ratios of 2H/1H and 18O/16O vary systematically, the variations give information about geographical origin. The exemplarily determination of authenticity is demonstrated by using mass spectrometric isotope ratio evaluation for identification of plant source and geographical origin with the help of selected sugar samples with known origin.


2017 ◽  
pp. 87-91
Author(s):  
Andreas G. Degenhardt ◽  
Elke Jansen ◽  
Timo, J. Koch

Modern instrumental analytical methods for the determination of 13C/12C ratios are established to differentiate between metabolic products of C3 and C4 plants. Differentiation and identification of sucrose from pure beet (Beta vulgaris) and pure cane (Saccharum officinarum) are possible without doubt. Influenced by the worldwide hydrological cycle the determination of the isotope ratios of 2H/1H and 18O/16O as well as their variations provide information about geographical origin. Using samples of selected crystal cane sugar (CCS) with known origin, invert sugar syrups (ISS) as well as burnt sugar syrups (BSS) produced therefrom, the authenticity was determined. The speciality sugars ISS and BSS which were made from CCS could be identified as carbohydrates of C4 plants by using 13C/12C Isotope-Ratio Mass Spectrometry (IRMS). In combination with yeast fermentation of ISS and sugar separation from BSS and fermentation into ethanol as well as knowledge about production water, the C2-H/O isotope ratios of ethanol can theoretically determine the geographical origin of the sugars.


2014 ◽  
Vol 53 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Maria Dimou ◽  
Chrysoula Tananaki ◽  
Georgios Goras ◽  
Dimitrios Kanelis ◽  
Andreas Thrasyvoulou

2018 ◽  
Vol 66 (44) ◽  
pp. 11873-11879 ◽  
Author(s):  
René Bachmann ◽  
Sven Klockmann ◽  
Johanna Haerdter ◽  
Markus Fischer ◽  
Thomas Hackl

2021 ◽  
Author(s):  
Elena Marrocchino ◽  
Serena Di Sarcina ◽  
Carlo Ragazzi ◽  
Carmela Vaccaro

<p>The identification of the geographical origin of food products is important for both consumers and producers to ensure quality and avoid label falsifications. Determination and authentication of the geographical origin of food products throughout scientific research have become recently relevant in investigations against frauds for consumer protection. Advances in methods and analytical techniques led to an increase in the application of fingerprinting analysis of foods for identification of geographical origin. Since in organic material the inorganic component is more stable than the organic one, several studies examined trace elements, suggesting the potential application for determination of geographical origin. Moreover, the studies on territoriality are based on the hypothesis that chemical elements detected in plants and in their products reflect those contained in the soil and, within these studies, the geographical features of the production area, such as the soil type and the climate, are considered relevant factors affecting the specific designation, so an accurate determination of geographical origin would be necessary to guarantee the quality and territoriality of the products.</p><p>In this light, two varieties of red chicory from the southern Po Delta area have been characterized together with the soil. The two inspected red chicory varieties (long-leaves and round-leaves) are cultivated in a well-defined area in the southern part of Po Delta, in an area sited around Massenzatica (Municipality of Mesola, Province of Ferrara, NE of Italy). Sampling was undertaken between October and December 2020 and samples were collected from a randomized field. Together with the red chicory also roots and soils have been collected in order to analyze each part and correlate the geochemical data obtained using ICP-MS and XRF techniques.</p><p>Purpose of this study is to establish a method to identify the geographical origin and the results confirm that some major and trace elements could be used as geochemical markers according to the geological areas. These elements, therefore, could be useful to establish geochemical fingerprints for testing the origin of this product and create a protected designation of origin label.</p>


Sign in / Sign up

Export Citation Format

Share Document