Effect of feeding a high level of sugar in the diet for the last 12 days before slaughter on muscle glycolytic potential and meat quality traits in pigs

1992 ◽  
Vol 60 (1) ◽  
pp. 135-138 ◽  
Author(s):  
X. Fernandez ◽  
Eva Tornberg ◽  
M. Mågård ◽  
L. Göransson
2013 ◽  
Vol 38 (1) ◽  
pp. 64-68
Author(s):  
Ji ZHU ◽  
Jian LIU ◽  
Jian-bang SUN ◽  
Shi-liu YANG ◽  
Jing-ru LI ◽  
...  

Author(s):  
Angela Cividini ◽  
Dušan Terčič ◽  
Mojca Simčič

The aim of this study was to estimate the effect of feeding system on the growth rate and carcass quality of crossbred Improved Jezersko-Solčava x Texel (JSRT) lambs and to evaluate the effect of sex on these traits. The trial was conducted in nature according to the traditional rearing systems. The trial included 44 crossbred lambs, which were born and reared until the slaughter in three different flocks. In the age of 10 days suckled lambs were offered with ad libitum corresponding diets according to the feeding system. All lambs were slaughtered in seven consecutive days by the same procedure. The effect of feeding system significantly affected daily gain from birth to slaughter, EUROP carcass conformation and shoulder width. Likewise, the effect of sex significantly affected daily gain from birth to slaughter and internal fatness of carcasses. According to carcass cuts the feeding system significantly affected only the proportion of neck and leg. Considering meat quality traits, feeding system had a significant effect on the pH 45 and CIE a* values. In this study, we could speculate that more than the feeding system the growth and the carcass traits as well as meat traits were affected by the amount of the supplement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simone Savoia ◽  
Andrea Albera ◽  
Alberto Brugiapaglia ◽  
Liliana Di Stasio ◽  
Alessio Cecchinato ◽  
...  

Abstract Background The possibility of assessing meat quality traits over the meat chain is strongly limited, especially in the context of selective breeding which requires a large number of phenotypes. The main objective of this study was to investigate the suitability of portable infrared spectrometers for phenotyping beef cattle aiming to genetically improving the quality of their meat. Meat quality traits (pH, color, water holding capacity, tenderness) were appraised on rib eye muscle samples of 1,327 Piemontese young bulls using traditional (i.e., reference/gold standard) laboratory analyses; the same traits were also predicted from spectra acquired at the abattoir on the intact muscle surface of the same animals 1 d after slaughtering. Genetic parameters were estimated for both laboratory measures of meat quality traits and their spectra-based predictions. Results The prediction performances of the calibration equations, assessed through external validation, were satisfactory for color traits (R2 from 0.52 to 0.80), low for pH and purge losses (R2 around 0.30), and very poor for cooking losses and tenderness (R2 below 0.20). Except for lightness and purge losses, the heritability estimates of most of the predicted traits were lower than those of the measured traits while the genetic correlations between measured and predicted traits were high (average value 0.81). Conclusions Results showed that NIRS predictions of color traits, pH, and purge losses could be used as indicator traits for the indirect genetic selection of the reference quality phenotypes. Results for cooking losses were less effective, while the NIR predictions of tenderness were affected by a relatively high uncertainty of estimate. Overall, genetic selection of some meat quality traits, whose direct phenotyping is difficult, can benefit of the application of infrared spectrometers technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Bittante ◽  
Simone Savoia ◽  
Alessio Cecchinato ◽  
Sara Pegolo ◽  
Andrea Albera

AbstractSpectroscopic predictions can be used for the genetic improvement of meat quality traits in cattle. No information is however available on the genetics of meat absorbance spectra. This research investigated the phenotypic variation and the heritability of meat absorbance spectra at individual wavelengths in the ultraviolet–visible and near-infrared region (UV–Vis-NIR) obtained with portable spectrometers. Five spectra per instrument were taken on the ribeye surface of 1185 Piemontese young bulls from 93 farms (13,182 Herd-Book pedigree relatives). Linear animal model analyses of 1481 single-wavelengths from UV–Vis-NIRS and 125 from Micro-NIRS were carried out separately. In the overlapping regions, the proportions of phenotypic variance explained by batch/date of slaughter (14 ± 6% and 17 ± 7%,), rearing farm (6 ± 2% and 5 ± 3%), and the residual variances (72 ± 10% and 72 ± 5%) were similar for the UV–Vis-NIRS and Micro-NIRS, but additive genetics (7 ± 2% and 4 ± 2%) and heritability (8.3 ± 2.3% vs 5.1 ± 0.6%) were greater with the Micro-NIRS. Heritability was much greater for the visible fraction (25.2 ± 11.4%), especially the violet, blue and green colors, than for the NIR fraction (5.0 ± 8.0%). These results allow a better understanding of the possibility of using the absorbance of visible and infrared wavelengths correlated with meat quality traits for the genetic improvement in beef cattle.


Sign in / Sign up

Export Citation Format

Share Document