Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals

2013 ◽  
Vol 94 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Glen Fox ◽  
Marena Manley
2021 ◽  
Vol 13 (6) ◽  
pp. 1128
Author(s):  
Iman Tahmasbian ◽  
Natalie K Morgan ◽  
Shahla Hosseini Bai ◽  
Mark W Dunlop ◽  
Amy F Moss

Hyperspectral imaging (HSI) is an emerging rapid and non-destructive technology that has promising application within feed mills and processing plants in poultry and other intensive animal industries. HSI may be advantageous over near infrared spectroscopy (NIRS) as it scans entire samples, which enables compositional gradients and sample heterogenicity to be visualised and analysed. This study was a preliminary investigation to compare the performance of HSI with that of NIRS for quality measurements of ground samples of Australian wheat and to identify the most important spectral regions for predicting carbon (C) and nitrogen (N) concentrations. In total, 69 samples were scanned using an NIRS (400–2500 nm), and two HSI cameras operated in 400–1000 nm (VNIR) and 1000–2500 nm (SWIR) spectral regions. Partial least square regression (PLSR) models were used to correlate C and N concentrations of 63 calibration samples with their spectral reflectance, with 6 additional samples used for testing the models. The accuracy of the HSI predictions (full spectra) were similar or slightly higher than those of NIRS (NIRS Rc2 for C = 0.90 and N = 0.96 vs. HSI Rc2 for C (VNIR) = 0.97 and N (SWIR) = 0.97). The most important spectral region for C prediction identified using HSI reflectance was 400–550 nm with R2 of 0.93 and RMSE of 0.17% in the calibration set and R2 of 0.86, RMSE of 0.21% and ratio of performance to deviation (RPD) of 2.03 in the test set. The most important spectral regions for predicting N concentrations in the feed samples included 1451–1600 nm, 1901–2050 nm and 2051–2200 nm, providing prediction with R2 ranging from 0.91 to 0.93, RMSE ranging from 0.06% to 0.07% in the calibration sets, R2 from 0.96 to 0.99, RMSE of 0.06% and RPD from 3.47 to 3.92 in the test sets. The prediction accuracy of HSI and NIRS were comparable possibly due to the larger statistical population (larger number of pixels) that HSI provided, despite the fact that HSI had smaller spectral range compared with that of NIRS. In addition, HSI enabled visualising the variability of C and N in the samples. Therefore, HSI is advantageous compared to NIRS as it is a multifunctional tool that poses many potential applications in data collection and quality assurance within feed mills and poultry processing plants. The ability to more accurately measure and visualise the properties of feed ingredients has potential economic benefits and therefore additional investigation and development of HSI in this application is warranted.


2014 ◽  
Vol 43 (24) ◽  
pp. 8200-8214 ◽  
Author(s):  
Marena Manley

Principles, interpretation and applications of near-infrared (NIR) spectroscopy and NIR hyperspectral imaging are reviewed.


2018 ◽  
Vol 26 (3) ◽  
pp. 186-195 ◽  
Author(s):  
Ana Morales-Sillero ◽  
Juan A. Fernández Pierna ◽  
George Sinnaeve ◽  
Pierre Dardenne ◽  
Vincent Baeten

Hyperspectral imaging is a powerful technique that combines the advantages of near infrared spectroscopy and imaging technologies. Most hyperspectral imaging studies focus on qualitative analysis, but there is growing interest in using such technique for the quantitative analysis of agro-food products in order to use them as universal tools. The overall objective of this study was to compare the performance of a hyperspectral imaging instrument with a classical near infrared instrument for predicting chemical composition. The determination of the protein content of wheat flour was selected as example. Spectra acquisition was made in individual sealed cells using two classical near infrared instruments (NIR-DS and NIR-Perstop) and a near infrared hyperspectral line-scan camera (NIR-HSI). In the latter, they were also acquired in open cells in order to study the possibility of accelerating the measurement process. Calibration models were developed using partial least squares for the full wavelength range of each individual instrument and for the common range between instruments (1120–2424 nm). The partial least squares models were validated using the “leave-one-out” cross-validation procedure and an independent validation set. The results showed that the NIR-HSI system worked as well as the classical near infrared spectrometers when a common wavelength range was used, with an r2 of 0.99 for all instruments and Root Mean Square Error in Prediction (RMSEP) values of 0.15% for NIR-HSI and NIR-DS and 0.16% for NIR-Perstop. The high residual predictive deviation values obtained (8.08 for NIR-DS, 7.92 for NIR-HSI, and 7.56 for NIR-Perstop) demonstrate the precision of the models built. In addition, the prediction performance with open cells was almost identical to that obtained with sealed cells.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Anouk A. M. A. Lindelauf ◽  
Alexander G. Saelmans ◽  
Sander M. J. van Kuijk ◽  
René R. W. J. van der Hulst ◽  
Rutger M. Schols

Rapid identification of possible vascular compromise in free flap reconstruction to minimize time to reoperation improves achieving free flap salvage. Subjective clinical assessment, often complemented with handheld Doppler, is the golden standard for flap monitoring; but this lacks consistency and may be variable. Non-invasive optical methods such as near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) could facilitate objective flap monitoring. A systematic review was conducted to compare NIRS with HSI in detecting vascular compromise in reconstructive flap surgery as compared to standard monitoring. A literature search was performed using PubMed and Embase scientific database in August 2021. Studies were selected by two independent reviewers. Sixteen NIRS and five HSI studies were included. In total, 3662 flap procedures were carried out in 1970 patients using NIRS. Simultaneously; 90 flaps were performed in 90 patients using HSI. HSI and NIRS flap survival were 92.5% (95% CI: 83.3–96.8) and 99.2% (95% CI: 97.8–99.7). Statistically significant differences were observed in flap survival (p = 0.02); flaps returned to OR (p = 0.04); salvage rate (p < 0.01) and partial flap loss rate (p < 0.01). However, no statistically significant difference was observed concerning flaps with vascular crisis (p = 0.39). NIRS and HSI have proven to be reliable; accurate and user-friendly monitoring methods. However, based on the currently available literature, no firm conclusions can be drawn concerning non-invasive monitoring technique superiority


NIR news ◽  
2018 ◽  
Vol 29 (8) ◽  
pp. 19-23 ◽  
Author(s):  
Hongzhe Jiang ◽  
Wei Wang ◽  
Xinzhi Ni ◽  
Hong Zhuang ◽  
Seung-Chul Yoon ◽  
...  

Near infrared spectroscopy and hyperspectral imaging are fast-growing, rapid, powerful, and non-destructive optical technologies that can be used especially in quality and safety control of agro-food products. The Non-destructive Detecting Laboratory for Agricultural and Food Products in the College of Engineering, China Agricultural University in Beijing, China, has engaged in research on sensing and characterizing agro-food quality and safety attributes with the latest optical methods including near infrared spectroscopy and hyperspectral imaging for over five years. In this report, some of our latest research and developments through multidisciplinary international collaborations will be highlighted to demonstrate our contributions to this near infrared spectroscopy and hyperspectral imaging sensing area to improve non-destructive diagnosis and quality control of agricultural and food products.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dang Duc Viet ◽  
Te Ma ◽  
Tetsuya Inagaki ◽  
Nguyen Tu Kim ◽  
Satoru Tsuchikawa

Abstract Acacia, including Acacia hybrids, are some of the most important species grown as part of the Vietnamese wood industry. Rapid methods to identify the variations in the wood properties of Acacia hybrids however, are a currently lacking and creating limits for their breeding programs. In this study, nine Acacia hybrid clones, including those that were diploid, triploid, and tetraploid were evaluated using near-infrared spectroscopy (NIR) and hyperspectral imaging (HSI). The standard normal variate (SNV) and second derivative (SP2D) were applied to compare the performances of NIR and HSI using partial least square regression. The HSI images were acquired at wavelengths from 1033 to 2230 nm and the SNV and SP2D described the variations in the wood properties. The NIR predicted the wood physical properties better than HSI, while they provided similar predictions for the mechanical properties. The mapping results showed low densities around the pith area and high densities near the bark. They also revealed that the air-dry moisture content changed at different positions within a disk and was dependent on its position within the tree. Overall, NIR and HSI were found to be potential wood property prediction tools, suitable for use in tree improvement programs.


Sign in / Sign up

Export Citation Format

Share Document