Determination of initial reaction rates using wilkinson's relation

1989 ◽  
Vol 21 (12) ◽  
pp. 1153-1160 ◽  
Author(s):  
William R. Ernst
1987 ◽  
Vol 52 (11) ◽  
pp. 2680-2686
Author(s):  
Jiří Růžička ◽  
Jiří Hanika ◽  
Zdeněk Sedláček ◽  
Vlastimil Růžička

Six catalysts containing 5 and 6.1 wt. % Pt were prepared by impregnation of activated carbon (Atlas AET 300) with H2PtCl6 from aqueous solutions and subsequent calcination and reduction with hydrogen at 100, 200, and 300 °C. The specific surface area was determined for the catalysts, saturated supports and the untreated support. The adsorption isotherms of n-pentane at 0 °C were measured for the support, saturated support and catalyst (100 °C), and the experimental data were correlated by the BET, Langmuir, and Dubinin equations; the pore radii distribution was also calculated for them. The activities of the catalysts were evaluated by measuring the initial reaction rates of hydrogenation of 1-octene and nitrobenzene.


Particles ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 205-213
Author(s):  
Anna Senger ◽  
Peter Senger

The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt is designed to investigate the properties of high-density QCD matter with multi-differential measurements of hadrons and leptons, including rare probes such as multi-strange anti-hyperons and charmed particles. The research program covers the study of the high-density equation-of-state of nuclear matter and the exploration of the QCD phase diagram at large baryon chemical potentials, including the search for quark matter and the critical endpoint of a hypothetical 1st order phase transition. The CBM setup comprises detector systems for the identification of charged hadrons, electrons, and muons; for the determination of collision centrality and the orientation of the reaction plane; and a free-streaming data read-out and acquisition system, which allows online reconstruction and selection of events up to reaction rates of 10 MHz. In this article, emphasis is placed on the measurement of muon pairs in Au-Au collisions at FAIR beam energies, which are unique probes used to determine the temperature of the fireball, and hence to search for a caloric curve of QCD matter. Simultaneously, the subthreshold production of charmonium can be studied via its dimuon decay in order to shed light on the microscopic structure of QCD matter at high baryon densities. The CBM setup with focus on dimuon measurements and the results of the corresponding physics performance studies will be presented.


Synlett ◽  
2020 ◽  
Author(s):  
Akira Yada ◽  
Kazuhiko Sato ◽  
Tarojiro Matsumura ◽  
Yasunobu Ando ◽  
Kenji Nagata ◽  
...  

AbstractThe prediction of the initial reaction rate in the tungsten-catalyzed epoxidation of alkenes by using a machine learning approach is demonstrated. The ensemble learning framework used in this study consists of random sampling with replacement from the training dataset, the construction of several predictive models (weak learners), and the combination of their outputs. This approach enables us to obtain a reasonable prediction model that avoids the problem of overfitting, even when analyzing a small dataset.


2006 ◽  
Vol 917 ◽  
Author(s):  
Shilpa Dubey ◽  
Keijing Li ◽  
Harish Bhandari ◽  
Zheng Hu ◽  
C. Heath Turner ◽  
...  

AbstractHafnium oxide ultra thin films on Si (100) are being developed to replace thermally grown SiO2 gates in CMOS devices. In this work, a specially designed Attenuated Total Reflectance - Fourier Transform Infra Red Spectroscopy (ATR-FTIR) reaction cell has been developed to observe chemisorption of hafnium (IV) t-butoxide onto a Si and Ge ATR crystal heated up to 250°C and under 1 torr of vacuum to observe the initial reaction pathways and species on the substrate surface in real time and under typical process conditions. Chemisorption spectra were compared to spectra of the liquid precursor and to spectra generated by density functional theory (DFT) calculations of liquid, monodentate and bidentate absorbed precursor. An asymmetric stretching mode located at ~1017 cm-1 present in the chemisorbed spectra but not in the liquid spectra indicates that the adsorbed hafnium containing group is prevalent as a bidentate ligand according to calculations. Surface concentration of the chemisorbed species was dependant on the substrate temperature and precursor partial pressure allowing for determination of heats of adsorption which was 26.5 kJ/mol on Si.


Biopolymers ◽  
1994 ◽  
Vol 34 (12) ◽  
pp. 1681-1689 ◽  
Author(s):  
John M. Ostresh ◽  
James H. Winkle ◽  
Vince T. Hamashin ◽  
Richard A. Houghten

2017 ◽  
Vol 9 (3) ◽  
pp. 85
Author(s):  
Iwekumo Agbozu ◽  
Bassey Uwem ◽  
Boisa Ndokiari

Removal of Zn, Pb, Cu and Fe ions from unspent and spent engine oil was studied using Termite soil. Process parameters such as contact time and adsorbent dosage were varied. Values from contact time were used for predicting kinetics equation of their uptake. At optimum time of 40 minutes, percentage adsorption was of the order Fe>Zn>Cu>Pb for both spent and unspent engine oil. Kinetics equation such as Elovich, Intra-particle, Pseudo-first order and Pseudo-second order were tested. Results obtained shows that their sequestering pattern fit into the pseudo-second order kinetics. Initial reaction rates, h (mg/g.min) and α (mg. g-1min-1) for all metal ions obtained from Pseudo-second order and Elovich kinetic models followed the trends Zn>Fe>Cu>Pb and Zn>Fe>Pb>Cu respectively in spent engine oil while for unspent engine oil, the trend was Fe>Zn>Cu>Pb for h (mg/g.min) and Zn>Fe>Pb>Cu for α (mg. g-1min-1). Electrostatic attraction existing on the surface of the adsorbent assisted in the high initial reaction of Zn and Fe ions, implying good affinity of the ions for the adsorbent. Desorption constant ᵦ (g/mg) was of the trend Cu>Pb>Fe>Zn and Cu>Pb>Zn>Fe for spent and unspent engine oils respectively. Intra-particle diffusion constant kid (mgg-1min-1/2) followed a similar pattern, revealing strong binding between Zn and termite soil than any of the metal ion. This pilot research has been able to suggest a kinetic process for uptake of the studied ions from spent and unspent engine oil.


2020 ◽  
Vol 15 (3) ◽  
pp. 674-686
Author(s):  
Eni Budiyati ◽  
Rochmadi Rochmadi ◽  
Arief Budiman ◽  
Budhijanto Budhijanto

Tung oil with an iodine value (IV) of 99.63 g I2/100 g was epoxidized in-situ with glacial acetic acid and hydrogen peroxide (H2O2), in the presence sulfuric acid as catalyst. The objective of this research was to evaluate the effect of mole ratio of H2O2 to unsaturated fatty acids (UFA), reaction time and catalyst concentration in Tung oil epoxidation. The reaction kinetics were also studied. Epoxidation was carried out for 4 h. The reaction rates and side reactions were evaluated based on the IV and the conversion of the epoxidized Tung oil to oxirane. Catalytic reactions resulted in higher reaction rate than did non-catalytic reactions. Increasing the catalyst concentration resulted in a large decrease in the IV and an increase in the conversion to oxirane at the initial reaction stage. However, higher catalyst concentration in the epoxidation reaction caused to a decrease in reaction selectivity. The mole ratio of H2O2 to UFA had an influence identical to the catalyst concentration. The recommended optimum mole ratio and catalyst concentration in this study were 1.6 and 1.5%, respectively. The highest conversion was 48.94% for a mole ratio of 1.6. The proposed kinetic model provided good results and was suitable for all variations in reaction temperature. The activation energy (Ea) values were around 5.7663 to 76.2442 kcal/mol. Copyright © 2020 BCREC Group. All rights reserved 


Sign in / Sign up

Export Citation Format

Share Document