Seed germination traits predict seedling emergence rather than survival of Stipa breviflora in populations along a latitude gradient

Author(s):  
Zuxin Zhang ◽  
Xinping Luo ◽  
Dali Chen ◽  
Lijun Chen ◽  
Xiaowen Hu
PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260674
Author(s):  
Yanyun Xu ◽  
Junyong Ye ◽  
Ahlam Khalofah ◽  
Ali Tan Kee Zuan ◽  
Rehmat Ullah ◽  
...  

Conyza sumatrensis (Retz.) E. H. Walker is an obnoxious weed, emerging as an invasive species globally. Seed germination biology of four populations of the species stemming from arid, semi-arid, temperate, and humid regions was determined in this study. Seed germination was recorded under six different environmental cues (i.e., light/dark periods, constant and alternating day and night temperatures, pH, salinity, and osmotic potential levels) in separate experiment for each cue. Populations were main factor, whereas levels of each environmental cue were considered as sub-factor. The impact of seed burial depths on seedling emergence was inferred in a greenhouse pot experiment. Seed germination was recorded daily and four germination indices, i.e., seed germination percentage, mean germination time, time to reach 50% germination, and mean daily germination were computed. Tested populations and levels of different environmental cues had significant impact on various seed germination indices. Overall, seeds stemming from arid and semi-arid regions had higher seed germination potential under stressful and benign environmental conditions compared to temperate and humid populations. Seed of all populations required a definite light period for germination and 12 hours alternating light and dark period resulted in the highest seed germination. Seed germination of all populations occurred under 5–30°C constant and all tested alternate day and night temperatures. However, the highest seed germination was recorded under 20°C. Seeds of arid and semi-arid populations exhibited higher germination under increased temperature, salinity and osmotic potential levels indicating that maternal environment strongly affected germination traits of the tested populations. The highest seed germination of the tested populations was noted under neutral pH, while higher and lower pH than neutral had negative impact on seed germination. Arid and semi-arid populations exhibited higher seed germination under increased pH compared to temperate and humid populations. Seed burial depth had a significant effect on the seedling emergence of all tested populations. An initial increase was noted in seedling emergence percentage with increasing soil depth. However, a steep decline was recorded after 2 cm seed burial depth. These results indicate that maternal environment strongly mediates germination traits of different populations. Lower emergence from >4 cm seed burial depth warrants that deep burial of seeds and subsequent zero or minimum soil disturbance could aid the management of the species in agricultural habitats. However, management strategies should be developed for other habitats to halt the spread of the species.


Author(s):  
Monika Agacka-Mołdoch ◽  
Mian Abdur Rehman Arif ◽  
Ulrike Lohwasser ◽  
Teresa Doroszewska ◽  
Ramsey S. Lewis ◽  
...  

AbstractGenetic mapping of seed germination traits has been performed with many plant species. In tobacco, however, investigations are rare. In the present study, a bi-parental mapping population consisting of 118 doubled haploid lines and derived from a cross between ‘Beinhart-1000’ and ‘Hicks’ was investigated. Four germination-related traits, total germination (TG), normal germination (NG), time to reach 50% of total germination (T50), and the area under the curve after 200 h of germination (AUC) were considered by examining seeds either untreated or after a moderate controlled deterioration (CD). Quantitative trait loci were found for all traits distributed on 11 out of the 24 linkage groups. It was demonstrated that, as in many other species, germination-related traits are very complex and under polygenic control.


Weed Science ◽  
2020 ◽  
pp. 1-29
Author(s):  
Yonghuan Yue ◽  
Guili Jin ◽  
Weihua Lu ◽  
Ke Gong ◽  
Wanqiang Han ◽  
...  

Abstract Drunken horse grass [Achnatherum inebrians (Hance) Keng] is a perennial poisonous weed in western China. A comprehensive understanding of the ecological response of A. inebrians germination to environmental factors would facilitate the formulation of better management strategies for this weed. Experiments were conducted under laboratory conditions to assess the effects of various abiotic factors, including temperature, light, water, pH and burial depth, on the seed germination and seedling emergence of A. inebrians. The seeds germinated at constant temperatures of 15, 20, 25, 30, 35°C and in alternating-temperature regimes of 15/5, 20/10, 25/15, 30/20, 35/25, 40/30°C, and the seed germination percentages under constant and alternating temperatures ranged from 51% to 94% and 15% to 93%, respectively. Maximum germination occurred at a constant temperature of 25°C, and germination was prevented at 45/35°C. Light did not appear to affect seed germination. The germination percentage of seeds was more than 75% in the pH range of 5 to 10, with the highest germination percentage at pH 6. The seeds germinated at osmotic potentials of 0 MPa to -1.0 MPa, but decreasing osmotic potential inhibited germination, with no germination at -1.2MPa. After 21 d of low osmotic stress, the seeds that did not germinate after rehydration had not lost their vitality. The seedling emergence percentage was highest (90%) when seeds were buried at 1 cm but declined with increasing burial depth and no emergence at 9 cm. Deep tillage may be effective in limiting the seed germination and emergence of this species. The results of this study provide useful information on the conditions necessary for A. inebrians germination and provide a theoretical basis for science-based prediction, prevention and control of this species.


2016 ◽  
Vol 27 (3) ◽  
pp. 637-645 ◽  
Author(s):  
Borja Jiménez-Alfaro ◽  
Fernando A.O. Silveira ◽  
Alessandra Fidelis ◽  
Peter Poschlod ◽  
Lucy E. Commander

2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


2002 ◽  
Vol 50 (2) ◽  
pp. 197 ◽  
Author(s):  
Timothy J. Wills ◽  
Jennifer Read

Various fire-related agents, including heat, smoke, ash and charred wood, have been shown to break dormancy and promote germination of soil-stored seed in a broad range of species in mediterranean-type systems. However, relatively little work has been conducted in south-eastern Australian heathlands. This study examined the effects of heat and smoked water on germination of the soil seed bank in a mature sand heathland within the Gippsland Lakes Coastal Park, in south-eastern Australia. Heat was clearly the most successful treatment for promoting seed germination, followed by smoked water, then controls, with 55% of species present in the germinable soil seed bank requiring a heat or smoke stimulus to promote seed germination. Mean species richness of the germinable soil seed bank was found to be significantly higher in heat-treated soil than in smoke and control treatments. Seedling density of heat-treated soil was almost 10 times that of controls, while smoke-treated soil was almost five times that of controls. Seedling emergence was fastest in heat-treated soil, followed by smoke and control soils. Of the species found in the soil seed bank, 25% were absent from the extant vegetation, suggesting the existence of post-fire colonisers in the soil seed bank. The results have implications for the design of soil seed bank experiments and the use of fire as a tool in vegetation management.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


Sign in / Sign up

Export Citation Format

Share Document