scholarly journals Diel variations in cell division and biomass production of Emiliania huxleyi — Consequences for the calculation of physiological cell parameters

2020 ◽  
Vol 65 (8) ◽  
pp. 1781-1800 ◽  
Author(s):  
Dorothee M. Kottmeier ◽  
Anja Terbrüggen ◽  
Dieter A. Wolf‐Gladrow ◽  
Silke Thoms
2018 ◽  
Author(s):  
Kai Xu ◽  
David Hutchins ◽  
Kunshan Gao

Background. The globally abundant coccolithophore, Emiliania huxleyi, plays an importantecological role in oceanic carbon biogeochemistry by forming a cellularcovering of plate-like CaCO 3 crystals (coccoliths) and fixing CO 2 .It is unknown how the cells arrange different-size of coccoliths to maintainfull coverage, as the cell surface area of the cell changes during daily cycle. Methods. We used Euler’s polyhedron formula and CaGe simulationsoftware, validated with the geometries of coccoliths, to analze and simulatethe coccolith topology of the coccosphere and to explore the arrangementmechanisms. Results. There were only small variations in the geometries ofcoccoliths, even when the cells were cultured under variable light conditions.Because of geometric limits, small coccoliths tended to interlock with fewerand larger coccoliths, and vice versa. Consequently, to sustain a full coverageon the surface of cell, each coccolith was arranged to interlock with four tosix others, which in turn led to each coccosphere contains at least 6coccoliths. Conclusions. The number of coccoliths per coccosphere must keep pacewith changes on the cell surface area as a result of photosynthesis,respiration and cell division. This study is an example of natural selectionfollowing Euler’s polyhedral formula, in response to the challenge ofmaintaining a CaCO 3 covering on coccolithophore cells as cell sizechanges.


2017 ◽  
Author(s):  
Kai Xu ◽  
David Hutchins ◽  
Kunshan Gao

Background. The globally abundant coccolithophore, Emiliania huxleyi, plays an important ecological role in oceanic carbon biogeochemistry by forming a cellular covering of plate-like CaCO3 crystals (coccoliths) and fixing CO2. It is unknown how the cells arrange different sizes of coccoliths to maintain full coverage as the cell surface area changes due to growth and cell division. Methods. We used Euler’s polyhedron formula and simulation software CaGe, validated with the geometries of coccoliths, to analyses the coccolith topology of coccosphere and the arrange mechanism. Results. The cells arrange each of the coccoliths to interlock with 4–6 others to keep pace with cell growth and cell division. Conclusions. This study represents an example of how natural selection has arrived at a solution based on Euler’s polyhedral formula in response to the challenge of maintaining a CaCO3 covering on coccolithophore cells as cell size changes.


2018 ◽  
Author(s):  
Kai Xu ◽  
David Hutchins ◽  
Kunshan Gao

Background. The globally abundant coccolithophore, Emiliania huxleyi, plays an importantecological role in oceanic carbon biogeochemistry by forming a cellularcovering of plate-like CaCO 3 crystals (coccoliths) and fixing CO 2 .It is unknown how the cells arrange different-size of coccoliths to maintainfull coverage, as the cell surface area of the cell changes during daily cycle. Methods. We used Euler’s polyhedron formula and CaGe simulationsoftware, validated with the geometries of coccoliths, to analze and simulatethe coccolith topology of the coccosphere and to explore the arrangementmechanisms. Results. There were only small variations in the geometries ofcoccoliths, even when the cells were cultured under variable light conditions.Because of geometric limits, small coccoliths tended to interlock with fewerand larger coccoliths, and vice versa. Consequently, to sustain a full coverageon the surface of cell, each coccolith was arranged to interlock with four tosix others, which in turn led to each coccosphere contains at least 6coccoliths. Conclusions. The number of coccoliths per coccosphere must keep pacewith changes on the cell surface area as a result of photosynthesis,respiration and cell division. This study is an example of natural selectionfollowing Euler’s polyhedral formula, in response to the challenge ofmaintaining a CaCO 3 covering on coccolithophore cells as cell sizechanges.


Author(s):  
L. M. Lewis

The effects of colchicine on extranuclear microtubules associated with the macronucleus of Paramecium bursaria were studied to determine the possible role that these microtubules play in controlling the shape of the macronucleus. In the course of this study, the ultrastructure of the nuclear events of binary fission in control cells was also studied.During interphase in control cells, the micronucleus contains randomly distributed clumps of condensed chromatin and microtubular fragments. Throughout mitosis the nuclear envelope remains intact. During micronuclear prophase, cup-shaped microfilamentous structures appear that are filled with condensing chromatin. Microtubules are also present and are parallel to the division axis.


Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
I.N. Yadhikov ◽  
S.K. Maksimov

Convergent beam electron diffraction (CBED) is widely used as a microanalysis tool. By the relative position of HOLZ-lines (Higher Order Laue Zone) in CBED-patterns one can determine the unit cell parameters with a high accuracy up to 0.1%. For this purpose, maps of HOLZ-lines are simulated with the help of a computer so that the best matching of maps with experimental CBED-pattern should be reached. In maps, HOLZ-lines are approximated, as a rule, by straight lines. The actual HOLZ-lines, however, are different from the straights. If we decrease accelerating voltage, the difference is increased and, thus, the accuracy of the unit cell parameters determination by the method becomes lower.To improve the accuracy of measurements it is necessary to give up the HOLZ-lines substitution by the straights. According to the kinematical theory a HOLZ-line is merely a fragment of ellipse arc described by the parametric equationwith arc corresponding to change of β parameter from -90° to +90°, wherevector, h - the distance between Laue zones, g - the value of the reciprocal lattice vector, g‖ - the value of the reciprocal lattice vector projection on zero Laue zone.


Author(s):  
Gunnel Karlsson ◽  
Jan-Olov Bovin ◽  
Michael Bosma

RuBisCO (D-ribulose-l,5-biphosphate carboxylase/oxygenase) is the most aboundant enzyme in the plant cell and it catalyses the key carboxylation reaction of photosynthetic carbon fixation, but also the competing oxygenase reaction of photorespiation. In vitro crystallized RuBisCO has been studied earlier but this investigation concerns in vivo existance of RuBisCO crystals in anthers and leaves ofsugarbeets. For the identification of in vivo protein crystals it is important to be able to determinethe unit cell of cytochemically identified crystals in the same image. In order to obtain the best combination of optimal contrast and resolution we have studied different staining and electron accelerating voltages. It is known that embedding and sectioning can cause deformation and obscure the unit cell parameters.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Author(s):  
Vladimir Popenko ◽  
Natalya Cherny ◽  
Maria Yakovleva

Highly polyploid somatic nucleus (macronucleus) of ciliate Bursaria truncatella under goes severe changes in morphology during cell division. At first, macronucleus (Ma) condences, diminishes in size and turns perpendicular to longitudinal axis of the cell. After short time, Ma turns again, elongates and only afterwards the process of division itself occurs. The biological meaning of these phenomena is not clear.Localization of RNA in the cells was performed on sections of ciliates B. truncatella, embedded in “Lowicryl K4M” at various stages: (1) before cell division (Figs. 2,3); (11) at the stage of macronucleus condensation; (111) during elongation of Ma (Fig.4); (1111) in young cells (0-5min. after division). For cytochemical labelling we used RNaseAcolloidal gold complexes (RNase-Au), which are known to bind to RNA containing cell ularstructures with high specificity. The influence of different parameters on the reliability and reproducibility of labelling was studied. In addition to the factors, discussed elsewhere, we found that the balance of mono- and bivalent cations is of great significance.


2020 ◽  
Vol 64 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Ben L. Carty ◽  
Elaine M. Dunleavy

Abstract Asymmetric cell division (ACD) produces daughter cells with separate distinct cell fates and is critical for the development and regulation of multicellular organisms. Epigenetic mechanisms are key players in cell fate determination. Centromeres, epigenetically specified loci defined by the presence of the histone H3-variant, centromere protein A (CENP-A), are essential for chromosome segregation at cell division. ACDs in stem cells and in oocyte meiosis have been proposed to be reliant on centromere integrity for the regulation of the non-random segregation of chromosomes. It has recently been shown that CENP-A is asymmetrically distributed between the centromeres of sister chromatids in male and female Drosophila germline stem cells (GSCs), with more CENP-A on sister chromatids to be segregated to the GSC. This imbalance in centromere strength correlates with the temporal and asymmetric assembly of the mitotic spindle and potentially orientates the cell to allow for biased sister chromatid retention in stem cells. In this essay, we discuss the recent evidence for asymmetric sister centromeres in stem cells. Thereafter, we discuss mechanistic avenues to establish this sister centromere asymmetry and how it ultimately might influence cell fate.


Sign in / Sign up

Export Citation Format

Share Document