Effect of annealing treatment on the mechanical properties and corrosion behaviors of 01570 aluminum alloy

2013 ◽  
Vol 65 (8) ◽  
pp. 809-814 ◽  
Author(s):  
X. H. Wang ◽  
J. H. Wang ◽  
J. Song ◽  
C. W. Fu
Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1633
Author(s):  
Zhiyi Zhang ◽  
Xiaoguang Sun ◽  
Shiming Huang ◽  
Xiaohui Han ◽  
Ping Zhu ◽  
...  

Aluminum alloy components of high-speed trains have a great risk of being corroded by various corrosive medium due to extremely complex atmospheric environments. This will bring out huge losses and reduce the safety and stability of trains. In order to solve the problem, cold spray process was used for repairing the damage of the aluminum alloy components with Al-based powders. Microstructure, mechanical properties and corrosion behavior were studied. The results indicated that there were very few pores and cracks in the repaired areas after repairing. The average microhardness of the repaired areas was 54.5 HV ± 3.4 HV, and the tensile strength of the repaired samples was 160.4 MPa. After neutral salt spray tests for 1000 h, the rate of mass loss of the samples repaired by cold spray was lower than that of 6A01 aluminum alloy. The electrochemical test results showed that the repaired areas had a higher open circuit potential than 6A01 aluminum alloy. As a result, the repaired areas such as the anode protected its nearby substrate. The samples repaired by cold spray exhibited better corrosion than 6A01 aluminum alloy. Cold spray process and Al-based powders are applicable for repairing the aluminum alloy components of high-speed trains.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1212
Author(s):  
Pei-Hua Tsai ◽  
Chung-I Lee ◽  
Sin-Mao Song ◽  
Yu-Chin Liao ◽  
Tsung-Hsiung Li ◽  
...  

Mg-based bulk metallic glass (BMG) and its composite (BMGC) can be excellent candidates as lightweight structure materials, but lack of anti-corrosion ability may restrict their application. In order to enhance the natural weak point of Mg-based BMGC, a 200-nm thick Zr-based metallic glass thin film (MGTF) ((Zr53Cu30Ni9Al8)99.5Si0.5) was applied and its mechanical properties as well as its corrosion resistance were appraised. The results of a 3-point bending test revealed that the flexural strength of the Mg-based BMGC with 200-nm thick Zr-based MGTF coating can be greatly enhanced from 180 to 254 MPa. We propose that the Zr-based MGTF coating can help to cover any small defects of a substrate surface, provide a protecting layer to prevent stress concentration, and cease crack initiation from the specimen surface during bending tests. Moreover, the results of anti-corrosion behavior analysis revealed a similar trend between the Mg-based BMG, Mg-based BMGC, and Mg-based BMGC with Zr-based MGTF coating in 0.9 wt.% sodium chloride solution. The readings show a positive effect with the Zr-based MGTF coating. Therefore, the 200-nm thick Zr-based MGTF coating is a promising solution to provide protection for both mechanical and anti-corrosion behaviors of Mg-based BMGC and reinforce its capability as structure material in island environments.


2019 ◽  
Vol 116 (2) ◽  
pp. 219 ◽  
Author(s):  
Junjun Cui ◽  
Liqing Chen ◽  
Yanfei Li ◽  
Jiahua Liu ◽  
Jiaqi Xie

In order to improve mechanical properties of roll cast 8011 aluminum alloy (AA 8011) by grain strengthening, and expand its application field, the effect of different annealing treating processes on mechanical properties and microstructures of cryogenic rolled AA 8011 was investigated. The roll cast AA 8011 was cryogenic rolled for six passes and then annealed. The annealing treatment was adopted at 100–300 °C for 1 h, and then the annealing treatment was adopted at 220 °C for 10–80 min. The microstructures of AA 8011 under roll cast and cryogenic rolled states were studied by using OM. The grain size was calculated by the Image-pro-plus 5.0. The microstructures of AA 8011 under annealing states were observed by using TEM and energy dispersive spectrum analysis. The results show that the second phase Al8Fe2Si appears in the cryogenic rolled AA 8011 after annealing treatment. When the dislocation moves in the grain, the dislocation plays a pinning role, which is conducive to grain refinement. The optical annealing treatment was treated at 220 °C for 40 min with optimal thermal stability. The ideal grain size is 1 μm, hardness is 65 HV, and tensile strength is 202 MPa. It is about 1.5 times of the roll cast AA 8011.


2016 ◽  
Vol 850 ◽  
pp. 618-624
Author(s):  
Yu Juan Yang ◽  
Jian Pin Lin ◽  
Bin Wang

To improve the formability of aluminum alloy, a new forming technique-the preform annealing process is proposed. Based on the mechanical properties of the original aluminum alloy AA5182-O with two experienced preforming annealing treatment, and preforming annealing process of a complex geometric shape aluminum door inner panel was numerical simulated by using LS-DYNA software. As a result, the effects of annealing time at 365°C on stamping height of the panel and the optimum annealing time were obtained. The results showed that the preform annealing process was feasible in the door inner panel. At 365°C, the smooth forming of the door inner panel was achieved after annealing for 20s with the pre-deformation amount 97mm, Which are the most suitable parameters.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1053-1058
Author(s):  
Hai Long Zhao ◽  
Wen Zhang ◽  
Chun Lin Zhang ◽  
Da Qian Sun ◽  
Xu Wang

The mechanical properties and corrosion behaviors of the casting Al-Cu alloys were investigated. The proportion of the two modifiers (PrxOy and LaxOy) has effects on the mechanical properties and the electrochemical corrosion behavior of the casting Al-Cu alloy. The ultimate true tensile strength of the Al-Cu alloy modified only by LaxOy is the highest (616.0 MPa). The fracture strain of the Al-Cu alloy modified by PrxOy and LaxOy is the highest (12.3%). The Al-Cu alloy modified by PrxOy has better corrosion resistance than any other Al-Cu alloy. The prominent mechanical properties should be attributed to the finer crystal grains and more homogeneously distributed nano-scale phase precipitates. The existence of continuous and compact protective Al2O3 and RE-O films enhanced the corrosion resistance of the modified Al-Cu alloy during the corrosion process.


Sign in / Sign up

Export Citation Format

Share Document