Ordered‐structure‐induced Electrochemical Post‐functionalization of Poly(3‐(2‐ethylhexyl)thiophene)

2022 ◽  
pp. 2100435
Author(s):  
Tomoyuki Kurioka ◽  
Takahiro Komamura ◽  
Naoki Shida ◽  
Teruaki Hayakawa ◽  
Ikuyoshi Tomita ◽  
...  
Author(s):  
S. McKernan ◽  
C. B. Carter ◽  
D. Bour ◽  
J. R. Shealy

The growth of ternary III-V semiconductors by organo-metallic vapor phase epitaxy (OMVPE) is widely practiced. It has been generally assumed that the resulting structure is the same as that of the corresponding binary semiconductors, but with the two different cation or anion species randomly distributed on their appropriate sublattice sites. Recently several different ternary semiconductors including AlxGa1-xAs, Gaxln-1-xAs and Gaxln1-xP1-6 have been observed in ordered states. A common feature of these ordered compounds is that they contain a relatively high density of defects. This is evident in electron diffraction patterns from these materials where streaks, which are typically parallel to the growth direction, are associated with the extra reflections arising from the ordering. However, where the (Ga,ln)P epilayer is reasonably well ordered the streaking is extremely faint, and the intensity of the ordered spot at 1/2(111) is much greater than that at 1/2(111). In these cases it is possible to image relatively clearly many of the defects found in the ordered structure.


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


Author(s):  
Paolo Zardi ◽  
Michele Maggini ◽  
Tommaso Carofiglio

AbstractThe post-functionalization of porphyrins through the bromination in β position of the pyrrolic rings is a relevant transformation because the resulting bromoderivatives are useful synthons to covalently link a variety of chemical architectures to a porphyrin ring. However, single bromination of porphyrins is a challenging reaction for the abundancy of reactive β-pyrrolic positions in the aromatic macrocycle. We herein report a synthetic procedure for the efficient preparation of 2-bromo-5,10,15,20-tetraphenylporphyrin (1) under continuous flow conditions. The use of flow technology allows to reach an accurate control over critical reaction parameters such as temperature and reaction time. Furthermore, by performing the optimization process through a statistical DoE (Design of Experiment) approach, these parameters could be properly adjusted with a limited number of experiments. This process led us to a better understanding of the relevant factors that govern porphyrins monobromination and to obtain compound 1 with an unprecedent 80% yield.


Compounds ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 58-74
Author(s):  
Emmanuel Aubert ◽  
Emmanuel Wenger ◽  
Paola Peluso ◽  
Victor Mamane

Non-symmetrical chiral 4,4′-bipyridines have recently found interest in organocatalysis and medicinal chemistry. In this regard, the development of efficient methods for their synthesis is highly desirable. Herein, a series of non-symmetrical atropisomeric polyhalogenated 4,4′-bipyridines were prepared and further functionalized by using cross-coupling reactions. The desymmetrization step is based on the N-oxidation of one of the two pyridine rings of the 4,4′-bipyridine skeleton. The main advantage of this methodology is the possible post-functionalization of the pyridine N-oxide, allowing selective introduction of chlorine, bromine or cyano groups in 2- and 2′-postions of the chiral atropisomeric 4,4′-bipyridines. The crystal packing in the solid state of some newly prepared derivatives was analyzed and revealed the importance of halogen bonds in intermolecular interactions.


2021 ◽  
Author(s):  
Christelle Gautier ◽  
Isidoro López ◽  
Tony Breton

Tailored 2D-nanomaterials can be prepared from diazonium electrografted surfaces through a wide range of post-functionalization approaches.


2021 ◽  
pp. 000370282110282
Author(s):  
Daitaro Ishikawa ◽  
Jiamin Yang ◽  
Tomoyuki Fujii

The purpose of this study was to understand the ordered structure of starch in rice flour based on a physical modification with non-heating, milling, and water sorption through the structural evaluation of rice flour using small-angle X-ray scattering (SAXS) and infrared spectroscopy within the 4000–100 cm−1 region. The SAXS pattern of the samples with low moisture contents subjected to milling yield a band within the 0.4–0.9 nm−1 of the q range owing to a lamellar repeat of starch with an ordered structure in rice flour. We proposed an order parameter using the intensity of the SAXS band to quantify the order structure of starch in rice flour, and the true density was negatively correlated with the order parameter. Infrared band at 990 cm−1 in COH bending mode applied to the hydroxyl group of C6 shifted to a low wavenumber corresponding to the order parameter. A linear correlation was found between the order parameter and the 990 cm−1 and band at 861 cm−1 owing to COC symmetrical stretching of glycoside bond and CH2 deformation of the glucose unit of starch, 572, 472, and 436 cm−1, owing to the pyranose ring in the glucose unit of starch. The identified infrared bands are effective for quantifying the ordered structure of starch at the lamellar level. When subjected to water sorption, the band position at 990 cm−1 shifted to a higher wavenumber above a water activity of 0.7. This result revealed that the water-induced transition of glass to rubber of starch in rice flour can be clearly evaluated through infrared spectroscopy using the band at 990 cm−1. In addition, the band at 861 cm−1 also shifted to a higher wavenumber, whereas those at 572 and 436 cm−1 did not show a significant shift. These results indicate that water sorption slightly affects the internal structure and may mainly affect the surface of starch.


Sign in / Sign up

Export Citation Format

Share Document