Compressive properties and energy absorption behavior of Mg17Al12/Al ordered structure composites

2021 ◽  
Vol 210 ◽  
pp. 108688
Author(s):  
Han Wang ◽  
Mingming Su ◽  
Hai Hao
2011 ◽  
Vol 121-126 ◽  
pp. 75-79
Author(s):  
Bo Young Hur ◽  
Rui Zhao

The compressive behaviors of AZ31-Zr foams using Ca particles as thickening agent and CaCO3 powder as foaming agent were investigated in this study. The porosity was about 48.7%~72.9%, pore size was between 0.43~0.97 mm, and homogenous pore structures were obtained. Mechanical properties of AZ31 Mg alloy foams were investigated by means of UTM. The cellular AZ31 Mg foams possess superior comprehensive mechanical properties. The energy absorption characteristics and the effects of compression behavior on the energy absorption properties for the cellular AZ31 Mg foams have been investigated and discussed. The results show that with the addition of Zr, the Mg alloy foam has the highest energy absorption value of 16.26 MJ/m3 and the hardness value of 81.8 HV, which is much higher than that of the foams fabricated without Zr.


2021 ◽  
Vol 889 ◽  
pp. 123-128
Author(s):  
Sheng Jun Liu ◽  
Zhi Qiang Dong ◽  
Ren Zhong Cao ◽  
Da Song ◽  
Jia An Liu ◽  
...  

In this study, the open-cell Mg-2Zn-0.4Y foams were prepared by infiltration casting method. The Ni/Mg hybrid foams were prepared by electroless Ni-P coating on the foam struts to improve the compressive strength and energy absorption capacity. The compressive properties of the Mg alloy foams and Ni/Mg hybrid foams were studied by quasi-static compressive test. The experimental results show that the Ni-P coating is composed of crystallites. The Ni-P coating can significantly enhance the compressive strength, energy absorption capacity and energy absorption efficiency of the foams.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3194 ◽  
Author(s):  
Zuqian Jiang ◽  
Liwen Zhang ◽  
Tao Geng ◽  
Yushan Lai ◽  
Weile Zheng ◽  
...  

Coir fiber (CF), an eco-friendly and renewable natural fiber, was introduced into magnesium phosphate cement (MPC) mortar to improve its crack resistance. A total of 21 specimens were employed to investigate the failure pattern, compressive strength, stress–strain curve, and energy absorption of MPC with varying CF lengths (0, 5, 10, 15, 20, 25, and 30 mm) after a curing period of 28 days through a static compressive test. The results demonstrated that compressive strength, elastic modulus, and secant modulus decreased with the increase in CF length. However, energy absorption presented a convex curve, which increased to the maximum value (77.0% relative to the value of the specimen without CF) with a CF length of 20 mm and then declined. A series of modern micro-tests were then carried out to analyze the microstructure and composition of specimens to explain the properties microscopically.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 517 ◽  
Author(s):  
Rinoj Gautam ◽  
Sridhar Idapalapati

Cellular lattice structures have important applications in aerospace, automobile and defense industries due to their high specific strength, modulus and energy absorption. Additive manufacturing provides the design freedom to fabricate complex cellular structures. This study investigates the compressive properties and deformation behavior of a Ti-6Al-4V unit Kagome structure fabricated by selective laser melting. Further, the mechanical performance of multi-unit and multi-layer Kagome structure of acrylonitrile butadiene styrene (ABS) ABS-M30™ manufactured by fused deposition modeling is explored. The effect of a number of layers of Kagome structure on the compressive properties is investigated. This paper also explores the mechanical properties of functionally graded and uniform density Kagome structure. The stiffness of the structure decreased with the increase in the number of layers whereas no change in peak load was observed. The functionally graded Kagome structure provided 35% more energy absorption than the uniform density structure.


2018 ◽  
Vol 280 ◽  
pp. 301-307
Author(s):  
Z. Zakaria ◽  
C.Y. Yao

This research focuses on the effect of rejected nitrile butadiene rubber (rNBR) gloves particles reinforced epoxy macrospheres (EM) on the physical properties and compressive stress of syntactic foam. Adding rNBR particles on the surface of macrospheres can increase the energy absorption as a result of improving the compressive properties of syntactic foam. Three types of macrospheres have been produced for the fabrication of syntactic foam, namely EM without rNBR, 1-layer rNBR-EM and 2-layer rNBR-EM. The results showed that increased rNBR particles layer on macrospheres has increased the wall thickness, and reduced the radius ratio of macrospheres as well as increased the density of syntactic foams. The compressive strength and modulus of syntactic foam with 2-rNBR-EM increased compared to the syntactic foams of 1-rNBR-EM and EM without rNBR. In addition, the toughness of the 2-rNBR-EM increased compared to the syntactic foams of 1-rNBR-EM and EM without rNBR.


2018 ◽  
Vol 22 (4) ◽  
pp. 948-961 ◽  
Author(s):  
Jinxiang Chen ◽  
Xindi Yu ◽  
Mengye Xu ◽  
Yoji Okabe ◽  
Xiaoming Zhang ◽  
...  

For the development of new types of lightweight sandwich structures, the compressive properties and strengthening mechanism of the middle-trabecular beetle elytron plate were investigated for various values of η (the ratio of the trabecular radius to the honeycomb wall length). The results are as follows: (1) When η = 0.1, the increases in the compressive strength and standard energy absorption capacity of the middle-trabecular beetle elytron plate compared with the honeycomb plate exceed those of the end-trabecular beetle elytron plate; with an increase to η = 0.15, the compressive strength remains nearly the same, the energy absorption capacity undergoes a significant further increase, and the trabeculae exhibit Φ-type failure. (2) The strengthening mechanism that gives rise to the compressive properties of the middle-trabecular beetle elytron plate is proposed as follows: the trabeculae are located at the center of the honeycomb walls, where the maximum deformations would otherwise occur; they constrain the deformation of the honeycomb walls; and the number of trabeculae in the middle-trabecular beetle elytron plate also exceeds that in the end-trabecular beetle elytron plate. (3) Middle-trabecular beetle elytron plates have the advantage of facile manufacturing, which will establish a basis for promoting the application of beetle elytron plates.


Sign in / Sign up

Export Citation Format

Share Document