Dual‐Responsive Soft Actuator Based on Aligned Carbon Nanotube Composite/Graphene Bimorph for Bioinspired Applications

Author(s):  
Heng Li ◽  
Run Li ◽  
Kesheng Wang ◽  
Ying Hu
Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1704 ◽  
Author(s):  
Yu Ji ◽  
Yufeng Xing ◽  
Xuequan Li ◽  
Li-Hua Shao

A dual-stimuli responsive soft actuator based on the three-dimensional (3D) porous carbon nanotube (CNT) sponge and its composite with polydimethylsiloxane (PDMS) was developed, which can realize both electrothermal and electrochemical actuation. The bimorph actuator exhibited a bending curvature of 0.32 cm−1·W−1 under electrothermal stimulation on land. The displacement of the electrochemical actuator could reach 4 mm under a 5 V applied voltage in liquid. The dual-responsive actuator has demonstrated the applications on multi-functional amphibious soft robots as a crawling robot like an inchworm, a gripper to grasp and transport the cargo and an underwater robot kicking a ball. Our study presents the versatility of the CNT sponge-based actuator, which can be used both on land and in water.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1463
Author(s):  
Takahiro Ampo ◽  
Takahide Oya

We propose a unique soft actuator—a paper actuator—based on carbon-nanotube-composite paper (CNT-composite paper), which is a composite of carbon nanotubes (CNTs) and paper. CNT-composite paper has highly efficient properties because of the contained CNTs, such as high electrical conductivity and semiconducting properties. We are considering using CNT-composite paper for various devices. In this study, we successfully developed a paper actuator. We determined the structure of the paper actuator by referencing that of bucky-gel actuators. The actuator operates using the force generated by the movement of ions. In addition to making the paper actuator, we also attempted to improve its performance, using pressure as an index and an electronic scale to measure the pressure. We investigated the optimal dispersant for use in paper actuators, expecting the residual dispersant on the CNT-composite paper to affect the performance differently depending on the type of dispersant. Referring to research on bucky-gel actuators, we also found that the addition of carbon powder to the electrode layers is effective in improving the pressure for paper actuators. We believe that the paper actuator could be used in various situations due to its ease of processing.


2020 ◽  
Vol 9 (1) ◽  
pp. 478-488 ◽  
Author(s):  
Yun-Fei Zhang ◽  
Fei-Peng Du ◽  
Ling Chen ◽  
Ka-Wai Yeung ◽  
Yuqing Dong ◽  
...  

AbstractElectroactive hydrogels have received increasing attention due to the possibility of being used in biomimetics, such as for soft robotics and artificial muscles. However, the applications are hindered by the poor mechanical properties and slow response time. To address these issues, in this study, supramolecular ionic polymer–carbon nanotube (SIPC) composite hydrogels were fabricated via in situ free radical polymerization. The polymer matrix consisted of carbon nanotubes (CNTs), styrene sulfonic sodium (SSNa), β-cyclodextrin (β-CD)-grafted acrylamide, and ferrocene (Fc)-grafted acrylamide, with the incorporation of SSNa serving as the ionic source. On applying an external voltage, the ions accumulate on one side of the matrix, leading to localized swelling and bending of the structure. Therefore, a controllable and reversible actuation can be achieved by changing the applied voltage. The tensile strength of the SIPC was improved by over 300%, from 12 to 49 kPa, due to the reinforcement effect of the CNTs and the supramolecular host–guest interactions between the β-CD and Fc moieties. The inclusion of CNTs not only improved the tensile properties but also enhanced the ion mobility, which lead to a faster electromechanical response. The presented electro-responsive composite hydrogel shows a high potential for the development of robotic devices and soft smart components for sensing and actuating applications.


Sign in / Sign up

Export Citation Format

Share Document