Small‐Diameter PLCL/PCL Nanofiber Grafted TSF Vascular Scaffolds with a Double‐Layer Structure for Vascular Tissue Engineering

Author(s):  
Weili Shao ◽  
Chen Cui ◽  
Junpeng Xiong ◽  
Ling Wang ◽  
Xu Zhao ◽  
...  
2011 ◽  
Vol 19 (2) ◽  
pp. 122-129 ◽  
Author(s):  
Kavitha Hassan ◽  
Sang Hoon Kim ◽  
Insu Park ◽  
Sun Hee Lee ◽  
Su Hee Kim ◽  
...  

Author(s):  
Jinah Jang ◽  
Junghyuk Ko ◽  
Dong-Woo Cho ◽  
Martin B. G. Jun ◽  
Deok-Ho Kim

Development of a small-diameter vascular graft (<6 mm) have been challenging due to thrombosis and intimal hyperplasia [1]. To overcome this problem, cardiovascular tissue engineers have attempted to construct a highly porous and biocompatible fibrous scaffold providing a sufficient mechanical strength for the regeneration of a functional tissue [2–5]. Herein, we present a 3D tubular-shaped micro/nanofibrous composite-layered scaffold for vascular tissue engineering. The surface of scaffold has high surface roughness by introducing nanofibrous layer and the biophysical properties have been fulfilled by using microfibrous layer. Moreover, the atomized spraying technique is applied to spray elastin proteins, which is well known as an antithrombogenic material, on the surface of micro/nanofibrous composite-layered scaffold to introduce an appropriate antithrombogenic surface.


2014 ◽  
Vol 2014 ◽  
pp. 1-27 ◽  
Author(s):  
Valentina Catto ◽  
Silvia Farè ◽  
Giuliano Freddi ◽  
Maria Cristina Tanzi

Cardiovascular diseases are the leading cause of mortality around the globe. The development of a functional and appropriate substitute for small diameter blood vessel replacement is still a challenge to overcome the main drawbacks of autografts and the inadequate performances of synthetic prostheses made of polyethylene terephthalate (PET, Dacron) and expanded polytetrafluoroethylene (ePTFE, Goretex). Therefore, vascular tissue engineering has become a promising approach for small diameter blood vessel regeneration as demonstrated by the increasing interest dedicated to this field. This review is focused on the most relevant and recent studies concerning vascular tissue engineering for small diameter blood vessel applications. Specifically, the present work reviews research on the development of tissue-engineered vascular grafts made of decellularized matrices and natural and/or biodegradable synthetic polymers and their realization without scaffold.


2007 ◽  
Vol 362 (1484) ◽  
pp. 1293-1312 ◽  
Author(s):  
Cay M Kielty ◽  
Simon Stephan ◽  
Michael J Sherratt ◽  
Matthew Williamson ◽  
C. Adrian Shuttleworth

For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.


2012 ◽  
Vol 706-709 ◽  
pp. 572-577
Author(s):  
Estelle Paternotte ◽  
Mariana Agostini de Moraes ◽  
Marisa Masumi Beppu ◽  
D. Mantovani

Small caliber vascular replacement (<4 mm) still remains a challenge for medical and research teams, as no available vascular substitutes (VS) are suitable for small diameter bypass. Vascular engineering proposes new models of small diameter VS but rare are those that meet the biocompatibility and mechanical criteria. In this study, we developed a new scaffold made by the combination of two natural biomacromolecules: collagen and silk fibroin. The scaffold was further cellularised with porcine smooth muscle cells. First, the behavior of cells in the collagen-fibroin constructs was verified in order to evaluate the biocompatibility of the scaffold with the cells. Then, gel mass loss and cellular attachment, morphology, spreading and viability were analysed. The results showed an excellent interaction and biocompatibility between collagen, silk fibroin fibers and cells. Thus, the collagen-fibroin construct appears to be a very attractive material for vascular tissue engineering.


Biomaterials ◽  
2008 ◽  
Vol 29 (10) ◽  
pp. 1454-1463 ◽  
Author(s):  
Jason D. Roh ◽  
Gregory N. Nelson ◽  
Matthew P. Brennan ◽  
Tamar L. Mirensky ◽  
Tai Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document