High Sensitivity, Long Durability, and Wearable Pressure Sensor based on the Polypyrrole/reduced Graphene Oxide /(Fabric‐sponge‐fabric) for Human Motion Monitoring

Author(s):  
Haonan Cheng ◽  
Bo Xu ◽  
Kun Yang ◽  
Yun jie Yin ◽  
Chaoxia Wang
Nanoscale ◽  
2017 ◽  
Vol 9 (27) ◽  
pp. 9581-9588 ◽  
Author(s):  
Subhajit Kundu ◽  
Rammohan Sriramdas ◽  
Kazi Rafsanjani Amin ◽  
Aveek Bid ◽  
Rudra Pratap ◽  
...  

Taped crumpled rGO can be used to detect a wide variety of strain and pressure with high sensitivity and extreme robustness.


2021 ◽  
Author(s):  
Sopit Phetsang ◽  
Pinit Kidkhunthod ◽  
Narong Chanlek ◽  
Jaroon Jakmunee ◽  
Pitchaya Mungkornasawakul ◽  
...  

Abstract Numerous studies suggest that modification with functional nanomaterials can enhance the electrode electrocatalytic activity, sensitivity, and selectivity of the electrochemical sensors. Here, a highly sensitive and cost-effective disposable non-enzymatic glucose sensor based on copper(II)/reduced graphene oxide modified screen-printed carbon electrode is demonstrated. Facile fabrication of the developed sensing electrodes is carried out by the adsorption of copper(II) onto graphene oxide modified electrode, then following the electrochemical reduction. The proposed sensor illustrates good electrocatalytic activity toward glucose oxidation with a wide linear detection range from 0.10 mM to 12.5 mM, low detection limit of 65 µM, and high sensitivity of 172 µA mM− 1 cm− 2 along with satisfactory anti-interference ability, reproducibility, stability, and the acceptable recoveries for the detection of glucose in a human serum sample (95.6–106.4%). The copper(II)/reduced graphene oxide based sensor with the superior performances is a great potential for the quantitation of glucose in real samples.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sweejiang Yoo ◽  
Xin Li ◽  
Yuan Wu ◽  
Weihua Liu ◽  
Xiaoli Wang ◽  
...  

Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide (rGOTA functionalized). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties ofrGOTA functionalized. Our results showrGOTA functionalizedonly selective to ammonia with excellent respond, recovery, respond time, and recovery times.rGOTA functionalizedelectrical resistance decreases upon exposure to NH3where we postulated that it is due to n-doping by TA and charge transfer betweenrGOTA functionalizedand NH3through hydrogen bonding. Furthermore,rGOTA functionalizedhinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.


2016 ◽  
Vol 119 (12) ◽  
pp. 124303 ◽  
Author(s):  
Miao Zhu ◽  
Xinming Li ◽  
Xiao Li ◽  
Xiaobei Zang ◽  
Zhen Zhen ◽  
...  

2018 ◽  
Vol 24 (7) ◽  
pp. 2969-2981 ◽  
Author(s):  
M. S. Manjunath ◽  
N. Nagarjuna ◽  
G. Uma ◽  
M. Umapathy ◽  
M. M. Nayak ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 18
Author(s):  
KumarBairagi ◽  
Goyal ◽  
NishithVerma

Methyl nicotinate (MN) is an important tuberculosis biomarker, and can be effectively measured using electrochemical methods. In this study, we have developed a novel N-doped phenolic polymer nanocomposite in situ dispersed with reduced graphene oxide and cobalt (Co)-nanoparticles as a sensor electrode (Co-rGO/PC). Co-nanoparticles were used for the MN recognition. Carbonization was performed for the reduction of GO and the synthesis of Co-nanoparticles. The prepared electrode materials were characterized using SEM, EDS, EIS, and CV. Tested using differential pulse voltammetry, Co-rGO/PC showed its pplicability (RSD < 6%) over 0.05–20.0 mg L−1 MN concentration with high sensitivity (S/N ratio = 3). The present method and materials can also be used for the development of sensors for the other biomarkers.


2019 ◽  
Vol 89 (23-24) ◽  
pp. 5144-5152 ◽  
Author(s):  
Ronghui Wu ◽  
Liyun Ma ◽  
Aniruddha Balkrishna Patil ◽  
Chen Hou ◽  
Zhaohui Meng ◽  
...  

Intelligent textile that endow traditional fabric with functionalities have attracted increasing attention. In this research work, we fabricated a flexible and wearable pressure sensor with conductive nylon fabric as the electrodes and elastomer Ecoflex as the dielectric layer. The conductive nylon fabric in the twill structure, which showed a high conductivity of 0.268 Ω·cm (specific resistance), was prepared by magnetron sputtering with silver films. The flexible pressure sensor shows a high sensitivity of 0.035 kPa−1, a good linear response under pressure from 0 to 16 kPa, and a quick response time of 0.801 s. The fabricated pressure sensor was found to be highly reproducible and repeatable against repeated mechanical loads for 9500 times, with a small capacitance loss rate of 0.0534. The fabric-based flexible and wearable sensor with good properties can be incorporated into a fabric garment by the hot-pressing method without sacrificing comfort, which can then be used for human motion detecting or touch sensing. The smart glove with finger touch function was proved to be efficient in Morse code editing, which has potential for information transfer in the military field.


Sign in / Sign up

Export Citation Format

Share Document