Synthesis and Optical Properties of Sol-Gel Hybrid Materials that Contain Perfluorocyclobutyl Groups

2006 ◽  
Vol 27 (16) ◽  
pp. 1330-1334 ◽  
Author(s):  
Kwan-Soo Lee ◽  
Jae-Pil Kim ◽  
Ho-Suk Song ◽  
Won-Guen Jang ◽  
Young-Sik Park ◽  
...  
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 267
Author(s):  
Florentina Monica Raduly ◽  
Valentin Rădiţoiu ◽  
Alina Rădiţoiu ◽  
Adriana Nicoleta Frone ◽  
Cristian Andi Nicolae ◽  
...  

Research in the field of natural dyes has constantly focused on methods of conditioning curcumin and diversifying their fields of use. In this study, hybrid materials were obtained from modified silica structures, as host matrices, in which curcumin dyes were embedded. The influence of the silica network structure on the optical properties and the antimicrobial activity of the hybrid materials was monitored. By modifying the ratio between phenyltriethoxysilane:diphenyldimethoxysilane (PTES:DPDMES), it was possible to evaluate the influence the organosilane network modifiers had on the morphostructural characteristics of nanocomposites. The nanosols were obtained by the sol–gel method, in acid catalysis. The nanocomposites obtained were deposited as films on a glass support and showed a transmittance value (T measured at 550 nm) of around 90% and reflectance of about 11%, comparable to the properties of the uncovered support. For the coatings deposited on PET (polyethylene terephthalate) films, these properties remained at average values of T550 = 85% and R550 = 11% without significantly modifying the optical properties of the support. The sequestration of the dye in silica networks reduced the antimicrobial activity of the nanocomposites obtained, by comparison to native dyes. Tests performed on Candida albicans fungi showed good results for the two curcumin derivatives embedded in silica networks (11–18 mm) by using the spot inoculation method; in comparison, the alcoholic dye solution has a spot diameter of 20–23 mm. In addition, hybrids with the CA derivative were the most effective (halo diameter of 17–18 mm) in inhibiting the growth of Gram-positive bacteria, compared to the curcumin derivative in alcoholic solution (halo diameter of 21 mm). The results of the study showed that the presence of 20–40% by weight DPDMES in the composition of nanosols is the optimal range for obtaining hybrid films that host curcumin derivatives, with potential uses in the field of optical films or bioactive coatings.


2006 ◽  
Vol 100 (6) ◽  
pp. 4811-4818 ◽  
Author(s):  
Mi-Ra Kim ◽  
Young-Il Choi ◽  
Sang-Wook Park ◽  
Jae-Wook Lee ◽  
Jin-Kook Lee

2004 ◽  
Vol 94 (1) ◽  
pp. 400-405 ◽  
Author(s):  
Jui-Ming Yeh ◽  
Chang-Jian Weng ◽  
Kuan-Yeh Huang ◽  
Hsi-Ya Huang ◽  
Yuan-Hsiang Yu ◽  
...  

2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2019 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
KOMARAIAH DURGAM ◽  
RADHA EPPA ◽  
REDDY M. V. RAMANA ◽  
KUMAR J. SIVA ◽  
R. SAYANNA ◽  
...  

2011 ◽  
Vol 26 (3) ◽  
pp. 275-280
Author(s):  
Kang LI ◽  
Jian-Feng HUANG ◽  
Li-Yun CAO ◽  
Bo WANG ◽  
Zhe-Yong SHI
Keyword(s):  

2019 ◽  
Vol 11 (3) ◽  
pp. 03021-1-03021-5
Author(s):  
V. S. Bushkova ◽  
◽  
I. P. Yaremiy ◽  
B. K. Ostafiychuk ◽  
N. I. Riznychuk ◽  
...  

Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


Sign in / Sign up

Export Citation Format

Share Document