Characteristics and Osteoconductivity of Bone Composite Scaffolds Made of Thai Silk Fibroin, Gelatin and Inorganic Compounds: A Comparative Study of β-Tricalcium Phosphate and Hydroxyapatite

2015 ◽  
Vol 354 (1) ◽  
pp. 258-264 ◽  
Author(s):  
Chotika Dararutana ◽  
Juthamas Ratanavaraporn ◽  
Sittisak Honsawek ◽  
Sorada Kanokpanont ◽  
Siriporn Damrongsakkul
Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 69 ◽  
Author(s):  
Fan Liu ◽  
Chen Liu ◽  
Bowen Zheng ◽  
Jia He ◽  
Jun Liu ◽  
...  

In bone tissue engineering, an ideal scaffold is required to have favorable physical, chemical (or physicochemical), and biological (or biochemical) properties to promote osteogenesis. Although silk fibroin (SF) and/or soy protein isolate (SPI) scaffolds have been widely used as an alternative to autologous and heterologous bone grafts, the poor mechanical property and insufficient osteoinductive capability has become an obstacle for their in vivo applications. Herein, β-tricalcium phosphate (β-TCP) and graphene oxide (GO) nanoparticles are incorporated into SF/SPI scaffolds simultaneously or individually. Physical and chemical properties of these composite scaffolds are evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR). Biocompatibility and osteogenesis of the composite scaffolds are evaluated using bone marrow mesenchymal stem cells (BMSCs). All the composite scaffolds have a complex porous structure with proper pore sizes and porosities. Physicochemical properties of the scaffolds can be significantly increased through the incorporation of β-TCP and GO nanoparticles. Alkaline phosphatase activity (ALP) and osteogenesis-related gene expression of the BMSCs are significantly enhanced in the presence of β-TCP and GO nanoparticles. Especially, β-TCP and GO nanoparticles have a synergistic effect on promoting osteogenesis. These results suggest that the β-TCP and GO enhanced SF/SPI scaffolds are promising candidates for bone tissue regeneration.


2021 ◽  
pp. 2150476
Author(s):  
Khakkulov Jakhongir Mardonovich ◽  
Kholmuminov Abdufatto Akhatovich ◽  
Temirov Zokir Shukurulloevich

The possibilities of movement and electrochemical reduction of fibroin macroions in the presence of tricalcium phosphate ions in the form of a nanocoating during electrolysis have been studied. The manifestation of a non-Newtonian flow of a mixture of macroions and ions in a shear flow, the conditions for their electrochemical reduction in the form of a nanocoating with uniform morphology, and thickness on the electrode surface are revealed. It was found that the excess ions in the mixture and the uneven relief of the electrode surface contribute to the formation of a nanocoating with an inhomogeneous and uneven thickness.


2018 ◽  
Vol 7 (1) ◽  
pp. 46-57 ◽  
Author(s):  
J. Zhou ◽  
X. G. Zhou ◽  
J. W. Wang ◽  
H. Zhou ◽  
J. Dong

Objective In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2.


Biopolymers ◽  
2021 ◽  
Author(s):  
Minami Yoshida ◽  
Paul R. Turner ◽  
Christopher John McAdam ◽  
Mohammed Azam Ali ◽  
Jaydee D. Cabral

2014 ◽  
Vol 900 ◽  
pp. 306-311 ◽  
Author(s):  
Xiu Lin Shu ◽  
Qing Shan Shi ◽  
Xiao Bao Xie ◽  
Xiao Mo Huang ◽  
Yi Ben Chen

In order to improvedβ-TCP biocompatibility and cell growth, was chosen to modify β-TCP matrices to produce a γ-PGA/β-TCP composite biomaterial. Then, the morphology, water uptake and retention abilities,in vitrodegradation property in the simulated medium, cytotoxicity of this novel γ-PGA/β-TCP composite is investigated. SEM shows that the γ-PGA/β-TCP composite has a porous structure. By increasing the percentage ofγ-PGA from 0% to 50%, the swelling ratio of the composite s was enhanced from 9.0%to 297%. These data suggested that the surface hydrophilicity, water absorption rate, and swelling ratio were improved by adding γ-PGA to the composite. In the cytocompatibility test, the density of MC3T3-E1 preosteoblasts cells on the PTCP1:1 leachates was almost 110% higher than that on the controls on day 3. Therefore, the γ-PGA/β-TCP composite scaffolds, due to their better hydrophilicity, cytocompatibility, and porous structure, are very promising biomaterials for tissure engineering applications.


Biomaterials ◽  
2008 ◽  
Vol 29 (5) ◽  
pp. 561-572 ◽  
Author(s):  
Borys Bondar ◽  
Sabine Fuchs ◽  
Antonella Motta ◽  
Claudio Migliaresi ◽  
Charles J. Kirkpatrick

Sign in / Sign up

Export Citation Format

Share Document