The impact of nanocolloidal wear-particles on human mononuclear cells

2006 ◽  
Vol 37 (6) ◽  
pp. 563-569 ◽  
Author(s):  
L. E. Podleska ◽  
M. Weuster ◽  
E. Dose ◽  
Chr. A. Kühne ◽  
D. Nast-Kolb ◽  
...  
2017 ◽  
Author(s):  
Lambros Athanassiou ◽  
Andrianos Nezos ◽  
Ifigenia Kostoglou-Athanassiou ◽  
Clio Mavragani ◽  
Panagiotis Athanassiou ◽  
...  

Diabetes ◽  
1986 ◽  
Vol 35 (12) ◽  
pp. 1364-1370 ◽  
Author(s):  
G. Grunberger ◽  
B. Iacopetta ◽  
J. L. Carpentier ◽  
P. Gorden

2018 ◽  
Vol 15 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Laleh Sharifi ◽  
Monireh Mohsenzadegan ◽  
Asghar Aghamohammadi ◽  
Nima Rezaei ◽  
Farzaneh Tofighi Zavareh ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 773
Author(s):  
Ayodeji Precious Ayanwale ◽  
Brenda Lizbeth Estrada-Capetillo ◽  
Simón Yobanny Reyes-López

High doses of antimicrobial agents are a huge threat due to the increasing number of pathogenic organisms that are becoming resistant to antimicrobial agents. This resistance has led to a search for alternatives. Therefore, this study presents the synthesis and characterization of ZrO2-Ag2O nanoparticles (NPs) by sol-gel. The NPs were analyzed by dynamic light scattering (DLS), UV-visible (UV-vis), Raman and scanning electron microscopy (SEM). The NPs were later evaluated for their antifungal effects against Candidaalbicans, Candida dubliniensis, Candida glabrata, and Candida tropicalis, using disc diffusion and microdilution methods, followed by the viability study. The DLS showed sizes for ZrO2 76 nm, Ag2O 50 nm, and ZrO2-Ag2O samples between 14 and 42 nm. UV-vis shows an absorption peak at 300 nm for ZrO2 and a broadband for Ag2O NPs. Raman spectra were consistent with factor group analysis predictions. SEM showed spherically shaped NPs. The antifungal activity result suggested that ZrO2-Ag2O NPs were effective against Candida spp. From the viability study, there was no significance difference in viability as a function of time and concentration on human mononuclear cells. This promising result can contribute toward the development of alternative therapies to treat fungal diseases in humans.


2021 ◽  
Vol 11 (8) ◽  
pp. 721
Author(s):  
Afshin Derakhshani ◽  
Zahra Asadzadeh ◽  
Hossein Safarpour ◽  
Patrizia Leone ◽  
Mahdi Abdoli Shadbad ◽  
...  

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document