Use of X-ray diffraction and micromagnetic methods for a complete characterization of residual stress states in manufactured parts

2009 ◽  
Vol 40 (5-6) ◽  
pp. 431-437
Author(s):  
J. Epp ◽  
T. Hirsch ◽  
T. de Souza Rosendo
Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2014 ◽  
Vol 631 ◽  
pp. 137-142 ◽  
Author(s):  
F.N. Oktar ◽  
H. Gokce ◽  
O. Gunduz ◽  
Y.M. Sahin ◽  
D. Agaogullari ◽  
...  

In this study the structural and chemical properties of barnacle shell based bioceramic materials (i.e. hydroxyapatite, whitlockite, monetite and other phases) were produced by using mechano-chemical (hot-plate) conversion method. Cleaned barnacle shells were ball milled down to <75µm in diameter. Differential thermal and gravimetric analyses (DTA/TGA) were performed to determine the exact CaCO3 content. Sample batches of 2g were prepared from the fine powders produced. For each batch, the required volume of an aqueous H3PO4 solution was calculated in order to set the stoichiometric molar ratio of Ca/P equal to 1.5 for ß-tricalcium phosphate (ß-TCP) or to 1.667 for hydroxyapatite (HA). The temperature was set to 80°C for 15 minutes to complete the process. After the titration of the equivalent amount of H3PO4 into the prepared solution, agitation was carried out on a hot-plate (i.e. mechano-chemical processing) for 8 hours. The sediments formed were dried and the resulting TCP and HA powders were calcined at 400°C and 800°C respectively. For complete characterization of the bioceramics produced, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses were carried out. The current study proposes a simple, economic and time efficient method for nano-bioceramic production.


2010 ◽  
Vol 652 ◽  
pp. 37-43 ◽  
Author(s):  
Jeremy Epp ◽  
Thomas Hirsch ◽  
Martin Hunkel ◽  
Robert C. Wimpory

The present work has been executed within the framework of the collaborative research center on Distortion Engineering (SFB 570) in order to evaluate the residual stress state of a disc after carburizing and quenching as well as to validate a simulation procedure. The combined use of X-ray and neutron diffraction analysis provided information about the residual stress states in the whole cross section. However, the stress free lattice spacing d0 for the neutron diffraction experiments is problematic and induces systematic uncertainties in the results and the application of a force balance condition to recalculate d0 might be a solution for improving the reliability of the results. Comparison of experimental results with simulation showed that an overall satisfying agreement is reached but discrepancies are still present.


2012 ◽  
Vol 729 ◽  
pp. 199-204 ◽  
Author(s):  
Dávid Cseh ◽  
Valéria Mertinger

Residual stresses have a fundamental effect on the operational behaviour and lifetime of industrial products. The fatigue resistance of machine parts can be increased by introducing residual compressive stresses into the surface region. For certain machine parts especially in the vehicle industry the residual stress is strongly demanded by the quality control. For this reason, measuring the stress accurately is becoming increasingly important. The Almen test, which only gives a qualitative result, is widely used in the industry. Shot peening and rolling are methods which are suitable for creating elastic residual stresses. This paper examines the technologies used by Rába Futómű Nyrt. to increase the lifetime by means of residual stress. We performed analysis of the residual stress of samples shot peened the same way but under different heat treatment states. We compared the residual stress values of burnished and hardened shaft joints, and the residual stress states of gear made of hardened alloy, comparing the carbonized ones to ones which were shot peened under small intensity.


2002 ◽  
Vol 712 ◽  
Author(s):  
C. Montoya ◽  
J. Lanas ◽  
M. Arandigoyen ◽  
I. Navarro ◽  
P.J. García Casado ◽  
...  

ABSTRACTTen ancient mortars of dolomitic origin, used in the construction of the church of Santa María de Zamarce in Navarre, Spain, have been studied in order to define their composition and to characterize the type of binder employed. A complete characterization has been carried out including: morphological examination (visually and using optical microscopy); mineralogical studies (X-ray diffraction, XRD); chemical analysis (main components and soluble salts); grain size distribution and thermal studies (thermogravimetric and thermodifferential simultaneous analysis, TGA-DTA). Dolomite and calcite, as binders, and quartz, as aggregate, have been found as the main phases. The important variability of the studied samples has confirmed that the choice of the raw materials and their preparation were not taken carefully. Thermal behavior of the samples has shown the endothermic peaks related to calcite and dolomite decarbonations. No hydromagnesite phases have been detected. Finally, the approximate indications of the original composition of the raw materials mixtures are presented.


1991 ◽  
Vol 35 (A) ◽  
pp. 561-569
Author(s):  
Jun S. Park ◽  
James F. Shackelford

AbstractThe analysis of linear dϕψ vs sin2ψ x-ray diffraction data in isotropic single phase materials was investigated for the evaluation of x-ray elastic constants. This study developed an experimental model for estimating x-ray elastic constants based on the analysis of biaxial residual stress states, A ball bearing steel and a 1018 steel weldment were evaluated.In a second study, the measurement of residual stress gradients was evaluated for those depth ranges mat can not be evaluated with a single radiation. This requires various planes and radiation energies to obtain the simultaneous conditions of high diffraction angle and large x-ray penetration depth. The evaluation of the overlapped stress gradient region is illustrated in terms of x-ray energy and diffraction angle for the ease of iron. This analysis is specifically developed for the purpose of stress gradient measurement using synchrotron radiation.


Sign in / Sign up

Export Citation Format

Share Document