Characterization of Ancient Dolomitic Binding Materials from Zamarce, in Navarre (Spain)

2002 ◽  
Vol 712 ◽  
Author(s):  
C. Montoya ◽  
J. Lanas ◽  
M. Arandigoyen ◽  
I. Navarro ◽  
P.J. García Casado ◽  
...  

ABSTRACTTen ancient mortars of dolomitic origin, used in the construction of the church of Santa María de Zamarce in Navarre, Spain, have been studied in order to define their composition and to characterize the type of binder employed. A complete characterization has been carried out including: morphological examination (visually and using optical microscopy); mineralogical studies (X-ray diffraction, XRD); chemical analysis (main components and soluble salts); grain size distribution and thermal studies (thermogravimetric and thermodifferential simultaneous analysis, TGA-DTA). Dolomite and calcite, as binders, and quartz, as aggregate, have been found as the main phases. The important variability of the studied samples has confirmed that the choice of the raw materials and their preparation were not taken carefully. Thermal behavior of the samples has shown the endothermic peaks related to calcite and dolomite decarbonations. No hydromagnesite phases have been detected. Finally, the approximate indications of the original composition of the raw materials mixtures are presented.

2014 ◽  
Vol 631 ◽  
pp. 137-142 ◽  
Author(s):  
F.N. Oktar ◽  
H. Gokce ◽  
O. Gunduz ◽  
Y.M. Sahin ◽  
D. Agaogullari ◽  
...  

In this study the structural and chemical properties of barnacle shell based bioceramic materials (i.e. hydroxyapatite, whitlockite, monetite and other phases) were produced by using mechano-chemical (hot-plate) conversion method. Cleaned barnacle shells were ball milled down to <75µm in diameter. Differential thermal and gravimetric analyses (DTA/TGA) were performed to determine the exact CaCO3 content. Sample batches of 2g were prepared from the fine powders produced. For each batch, the required volume of an aqueous H3PO4 solution was calculated in order to set the stoichiometric molar ratio of Ca/P equal to 1.5 for ß-tricalcium phosphate (ß-TCP) or to 1.667 for hydroxyapatite (HA). The temperature was set to 80°C for 15 minutes to complete the process. After the titration of the equivalent amount of H3PO4 into the prepared solution, agitation was carried out on a hot-plate (i.e. mechano-chemical processing) for 8 hours. The sediments formed were dried and the resulting TCP and HA powders were calcined at 400°C and 800°C respectively. For complete characterization of the bioceramics produced, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses were carried out. The current study proposes a simple, economic and time efficient method for nano-bioceramic production.


2006 ◽  
Vol 514-516 ◽  
pp. 843-847 ◽  
Author(s):  
Cristina Borges Correia ◽  
João C. Bordado

Polyurethane adhesives provide excellent flexibility, impact resistance and durability. Polyurethanes are formed through the reaction of an isocyanate component with polyether or polyester polyols or other active hydrogen compounds. This paper refers to polyurethane adhesives made from polyester polyols with long aliphatic chains (up to 36 carbon atoms) and MDI (diphenylmethane-4,4’-diisocyanate). The polyester polyols have been made from dimer acids obtained from renewable sources and short chain diols. The polyols that were used presented different degrees of unsaturation. The influence of the different raw materials in the adhesives performance is studied. The polyurethanes were produced by reaction between quasi-stoichiometric quantities of polyol and MDI, at several temperatures. The reaction was carried under inert atmosphere and at temperatures below 100°C. Performance of the adhesives was tested by carrying adhesion, hardness and water absorption tests. Characterization of both the polyester polyols and polyurethane adhesives was carried by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Magnetic Nuclear Resonance (NMR), X-Ray Diffraction (WAXD), Scanning RMN Imaging of 1H of Stray- Field b (MRI) and Brookfield viscometry.


MRS Advances ◽  
2019 ◽  
Vol 4 (64) ◽  
pp. 3569-3577
Author(s):  
Miguel José Álvarez Velásquez ◽  
Valentina Martínez Cortes ◽  
Lina Paola Guarín Alfaro ◽  
Alejandro Figueroa Jaramillo ◽  
Yesmith Santos Panqueva ◽  
...  

ABSTRACTAccording to the UNEP, mercury pollution is one of the main contamination problems of the world. The UN showed that more than 1,870 tons of this metal are released into the environment annually. This material arrives to water bodies where fish consume it and then reaches humans, producing negative effects on their health. The hydroxyapatite is one of the main components of bones and has proven itself to be useful in the removal of mercury from polluted sources. The aim of this research project is to synthesize and characterize different formulations of this substance and to determine which is the best selective formulation to remove mercury in water. Currently, twenty-one formulations have been produced. The experimental variables examined are the pH, the temperature and the time of calcination. These variables are characterized with Infrared Spectrophotometry (IR), Scanning Electron Microscope (SEM) and X-ray diffraction (XRD). Before calcination the samples contained 70% of hydroxyapatite. This concentration increased in some of them after calcination. The analysis of the results allowed to test the efficiency of these formulations at removing mercury from water. These materials will also be combined, in future stages of the research, with other substances such as activated carbon and organic fibers to improve their performance. The material will be used to coat a filter so that it can become a piping accessory to remove mercury from polluted waters as it is being recirculated.


2019 ◽  
Vol 25 (6) ◽  
pp. 1471-1481
Author(s):  
Tea Zubin Ferri ◽  
Emina Pustijanac ◽  
Ines Kovačić ◽  
Josipa Bilić

AbstractThe aim of the present study was to map the painting materials, degradation processes, and biological features present on the mural painting in the church of St. Mary in Beram (Croatia) to study their possible interaction and produce information helping the preservation of this valuable painting. The research was conducted on micro samples of painting materials taken from different sites along the painting and the characterization of the present fungal species was carried out. The painting samples, together with observable patinas and degradation products, were studied by optical microscopy (OM), scanning electron microscopy, energy-dispersive spectroscopy (SEM/EDS), Fourier-Transform Infrared spectroscopy, and powder X-ray diffraction. Fungal diversity was studied using cultivation methods followed by OM and SEM analyses in addition to molecular analysis. The results contribute to the characterization of the original painting materials, successively added materials and occurred interventions, to the understanding of degradation progressions and fungal biotransformation processes. A mineral, cumengite, a copper-based pigment extremely rarely used in art, was found. Its occurrence together with barium sulfate, gypsum, and calcium oxalate possibly produced by microbiological activity was studied and information was added regarding the composition of painting materials in St. Mary church mural cycle.


Clay Minerals ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 277-281 ◽  
Author(s):  
Cristiana Costa ◽  
António Fortes ◽  
Fernando Rocha ◽  
Angela Cerqueira ◽  
Delfim Santos ◽  
...  

AbstractPortuguese gypsum deposits utilized by the cement industry were characterized mineralogically, chemically and technologically for possible application in dermocosmetics. The deposits studied (Loulé, Óbidos and Soure) correspond to small outcrops in diapiric anticline areas. In principle, they represent gypsites which are white, and generally of higher quality for traditional applications (e.g. white cement), or greyish, and generally not adequate for cements and mortars. The analytical methods used to characterize the materials were wet sieving and X-ray sedimentation, X-ray diffraction, X-ray fluorescence spectrometry and assessment of abrasiveness, plasticity, texturometrics (adhesivity and firmness), oil absorption and cooling rate. The Óbidos gypsum displayed greater mineralogical and chemical quality (almost pure calcium sulfate) and had a finer grain size (<63 μm), whereas Loulé and Soure gypsums contain mineralogical impurities (mainly quartz). The Óbidos gypsum shows good characteristics in general for application in dermocosmetics because of its absorption, plasticity, adhesivity, firmness and low abrasiveness.


2013 ◽  
Vol 6 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Abdulmula Ali Albhilil ◽  
Martin Palou ◽  
Jana Kozánková

Abstract Series of six cordierite-mullite ceramics were synthesized via solid state reaction at various temperatures from 1250 °C for pure cordierite to 1500 °C for pure mullite. Then the samples were submitted to the test of thermal shock resistance based on cycling heating-quenching procedure. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Mercury intrusion porosimeter (MIP) have been used to characterize the samples before and after cycling heating-quenching method. Sample 6 was broken after 35 heating-quenching cycles, while the five other reminded stable. The refractoriness of samples is found to be higher than that of commercial ones. XRD shows that heating-quenching procedure has led to crystallization of cordierite and mullite phases. Apart from sample 6, the pore structure is stable with slight consolidation. The microstructure images confirm the results of XRD and MIP showing crack in sample 6 only, but compact and larger particles resulting from crystal growth in other samples due to the repeated action of heating.


2012 ◽  
Vol 182-183 ◽  
pp. 249-253
Author(s):  
Jun Qiao ◽  
Jia Wei Shen ◽  
Xiang Hong Huang ◽  
Qian Feng Zhang

PMMA/MMT nanocomposites has been prepared by using methyl methacrylate (MMA), montmorillonite (MMT) and ethanolamine as the raw materials via an in-situ free radical polymerization process. The as-prepared nanocomposites were characterized by Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results show that the poly(methyl methacrylate) and inorganic montmorillonite have been effectively combined. The structure and thermal stability of the as-prepared nanocomposites are different from the content of MMT in the nanacomposites.


2013 ◽  
Vol 631-632 ◽  
pp. 434-436
Author(s):  
Jiu Ming Liu ◽  
Jian Lei Wang ◽  
Shu Xia Ren

Using silicon powders as raw materials, adding nano-silicon nitride as a diluent and NH4Cl3 and FeCl3 as catalysts, α-phase silicon nitride powders were prepared by direct nitridation method. The silicon powders were first milled with 20% α-Si3N4 and 4% NH4Cl3 for 30 minutes. Then the mixture was heat-treated at 1300°C for 1 hour in the pure nitrogen gas. The phases and their content of the as-prepared product were detected by X-ray diffraction (XRD) and the microstructure was studied by scanning electron microscope (SEM). The results showed that the product mainly consisted ofα-Si3N4 with a mass fraction over 92% and were submicron-sized particles.


2012 ◽  
Vol 624 ◽  
pp. 59-62 ◽  
Author(s):  
Cai Xia Li ◽  
Jun Guo ◽  
Danyu Jiang ◽  
Qiang Li

In this paper, employing Cu(AC)2•H2O, SnCl2•2H2O and thiourea as raw materials, the composites of graphene/Cu2SnS3 quantum dots (QDs) were prepared simply and quickly using the hydrothermal method. Meanwhile, the separate Cu2SnS3 QDs were also synthesized in the same way. The as-obtained Cu2SnS3 QDs and composites’ phase structures were analyzed and characterized by powder X-ray diffraction (XRD), and the results indicated that the size of the Cu2SnS3 QDs in the composites were less than that of the separate Cu2SnS3 QDs. At the same time, their morphologies were also observed and cross-confirmed by Transmission Electron Microscopy (TEM), and the measurements manifested that Cu2SnS3 QDs were uniformly dispersed on the surface of the graphene, while the separate Cu2SnS3 QDs have obvious glomeration. In addition to this, elemental analysis was also made to verify the existence of Cu2SnS3 on the surface of graphene.


Sign in / Sign up

Export Citation Format

Share Document