Adapting available finite element structural programs to solve three-dimensional high frequency electromagnetic problems

Author(s):  
E. A. Navarro ◽  
J. M. Femenia ◽  
V. Such
Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 218 ◽  
Author(s):  
Praveen Kalarickel Ramakrishnan ◽  
Mirco Raffetto

A set of sufficient conditions for the well posedness and the convergence of the finite element approximation of three-dimensional time-harmonic electromagnetic boundary value problems involving non-conducting rotating objects with stationary boundaries or bianisotropic media is provided for the first time to the best of authors’ knowledge. It is shown that it is not difficult to check the validity of these conditions and that they hold true for broad classes of practically important problems which involve rotating or bianisotropic materials. All details of the applications of the theory are provided for electromagnetic problems involving rotating axisymmetric objects.


Author(s):  
P Cawley ◽  
M J S Lowe ◽  
F Simonetti ◽  
C Chevalier ◽  
A G Roosenbrand

The reflection coefficients of extensional guided modes from notches of different axial, circumferential and through-thickness extent in pipes of different diameters have been studied using finite element analysis. A selection of the predictions has also been validated by experiments. For part-thickness notches of a given circumferential extent and minimal axial extent, the reflection coefficient increases monotonically with depth at all frequencies, and increases with frequency at a given depth. When the wavelength is long compared to the pipe wall thickness, the reflection coefficient from part-thickness notches of a given circumferential extent is a strong function of the defect axial extent, the reflection being a maximum at an axial extent of about 25 per cent of the wavelength and a minimum at 0 and 50 per cent. The reflection coefficient is a linear function of the defect circumferential extent at higher frequencies (with frequency-diameter products greater than about 3000 kHz mm) where a ray theory analysis explains the behaviour, while at low frequencies the reflection coefficient at a given circumferential extent is reduced. In the high-frequency regime, the axial extent of a through-thickness defect has little influence on the reflection coefficient, while it is important at lower frequencies. Three-dimensional, finite element predictions in the high-frequency regime have shown that the reflection coefficient from a part-thickness, part-circumferential defect can be predicted by multiplying the reflection coefficient for an axisymmetric defect of the same depth and axial extent by that for a through-thickness defect of the same circumferential extent.


2016 ◽  
Vol 16 (04) ◽  
pp. 1650041 ◽  
Author(s):  
LEI ZHOU ◽  
MIAOLIN FENG ◽  
WEI WANG ◽  
HUA TONG ◽  
JIANPING LIU ◽  
...  

The lever ratio, the vibration mode and the stiffness of the ossicular joints were studied using the finite element (FE) analysis of the response of human ear under the outer ear sound excitation. The three-dimensional FE model was constructed based on serial micro CT images of a temporal bone block, and validated through comparison with the experimental data from previous literatures. The displacements of the umbo and stapes footplate and the vibration mode of the ossicles under different grades of stiffness of middle ear components were derived. It is suggested that the flexible ossicular joint combined with the shift of rotation axis causes the increase of lever ratio at high frequency. In addition, the flexible incudostapedial joint (ISJ) can reduce sound transmission especially at high frequency, meanwhile it also permits more vibration energy transmitted to the piston-like directions.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


Sign in / Sign up

Export Citation Format

Share Document