STUDY ON THE ROLE OF OSSICULAR JOINT USING FINITE ELEMENT METHOD

2016 ◽  
Vol 16 (04) ◽  
pp. 1650041 ◽  
Author(s):  
LEI ZHOU ◽  
MIAOLIN FENG ◽  
WEI WANG ◽  
HUA TONG ◽  
JIANPING LIU ◽  
...  

The lever ratio, the vibration mode and the stiffness of the ossicular joints were studied using the finite element (FE) analysis of the response of human ear under the outer ear sound excitation. The three-dimensional FE model was constructed based on serial micro CT images of a temporal bone block, and validated through comparison with the experimental data from previous literatures. The displacements of the umbo and stapes footplate and the vibration mode of the ossicles under different grades of stiffness of middle ear components were derived. It is suggested that the flexible ossicular joint combined with the shift of rotation axis causes the increase of lever ratio at high frequency. In addition, the flexible incudostapedial joint (ISJ) can reduce sound transmission especially at high frequency, meanwhile it also permits more vibration energy transmitted to the piston-like directions.

Author(s):  
Marcus Brown ◽  
John Bradshaw ◽  
Rong Z. Gan

Abstract Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea's response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid-structure interfaces. The model's middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate displacements up to 28.5µm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2µm from a BOP input of 30.7kPa. The cochlea's spiral shape caused asymmetric pressure distributions as high as 4kPa across the cochlea's width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses towards a model able to predict potential hearing loss after blast.


Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


2014 ◽  
Vol 695 ◽  
pp. 588-591
Author(s):  
Khairul Salleh Basaruddin ◽  
Ruslizam Daud

This study aims to investigate the influence of trabecular bone in human mandible bone on the mechanical response under implant load. Three dimensional voxel finite element (FE) model of mandible bone was reconstructed from micro-computed tomography (CT) images that were captured from bone specimen. Two FE models were developed where the first consists of cortical bone, trabecular bone and implants, and trabecular bone part was excluded in the second model. A static analysis was conducted on both models using commercial software Voxelcon. The results suggest that trabecular bone contributed to the strength of human mandible bone and to the effectiveness of load distribution under implant load.


2017 ◽  
Vol 7 ◽  
pp. 219-223
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armagan Fatih Karamanli

Aims The aim of this study is to evaluate the effects of the chincup appliance used in the treatment of Class III malocclusions, not only on the mandible or temporomandibular joint (TMJ) but also on all the craniofacial structures. Materials and Methods Chincup simulation was performed on a three-dimensional finite element (FE) model. 1000 g (500 g per side) force was applied in the direction of chin-condyle head. Nonlinear FE analysis was used as the numerical analysis method. Results By the application of chincup, stresses were distributed not only on TMJ or mandible but also on the circummaxillary sutures and other craniofacial structures. Conclusions Clinical changes obtained by chincup treatment in Class III malocclusions are not limited by only mandible. It was seen that also further structures were affected.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


Author(s):  
David A. Hopkins ◽  
Stephen A. Wilkerson

Abstract A series of experiments were recently conducted in an attempt to reduce the dynamic motions of the M256 gun system during firing. Data collected during these experiments included the motion of the gun tube and breech mechanism for both the standard (unbalanced) configuration and a modified system in which mass was added such that the breech center of gravity (CG) was coincident with the gun tube centerline. The results indicated a noticeable change in the dynamic motions between these two configurations. Prior experiments indicated that the unbalanced breech drops several tenths of a millimeter during the firing cycle. Also, the gun tube whipping motion, which is induced by the powder pressure couple, vibrates the gun in a similar fashion regardless of ammunition type. Furthermore, the gun tube shape at shot exit always resembles a distorted sine wave. This behavior was noted for both heat and kinetic energy (KE) munitions in previous unbalanced breech tests conducted with the M256 gun. However, when the breech is balanced, the dynamics of the entire system change in both shape and magnitude of displacement. This report attempts to explain the results of the tests performed. This was accomplished using a three-dimensional (3-D), transient, finite element (FE) model of the entire system, which included breech, gun tube, trunnion mount, recoil, and projectile. Results from these calculations provide an explanation of the observed behavior of the system. Insight acquired about the nature of the system’s behavior was then used to propose several simple improvements to the M256 gun system which can be applied to gun systems in general. Implementation of these changes should decrease the shot-to-shot variability associated with gun accuracy.


2019 ◽  
Vol 281 ◽  
pp. 01006 ◽  
Author(s):  
Majid M.A. Kadhim ◽  
Mohammed J Altaee ◽  
Ali Hadi Adheem ◽  
Akram R. Jawdhari

Fibre reinforced cementitious matric (FRCM) is a recent application of fibre reinforced polymer (FRP) reinforcement, developed to overcome several limitations associated with the use of organic adhesive [e.g. epoxies] in FRPs. It consists of two dimensional FRP mesh saturated with a cement mortar, which is inorganic in nature and compatible with concrete and masonry substrates. In this study, a robust three-dimensional (3D) finite element (FE) model has been developed to study the behaviour of slender reinforced concrete columns confined by FRCM jackets, and loaded concentrically and eccentrically. The model accounts for material nonlinearities in column core and cement mortar, composite failure of FRP mesh, and global buckling. The model response was validated against several laboratory tests from literature, comparing the ultimate load, load-lateral deflection and failure mode. Maximum divergence between numerical and experimental results was 12%. Following the validation, the model will be used later in a comprehensive parametric analysis to gain a profound knowledge of the strengthening system, and examine the effects of several factors expected to influence the behaviour of confined member.


2019 ◽  
Vol 43 (4) ◽  
pp. 443-453
Author(s):  
Stephen M. Handrigan ◽  
Sam Nakhla

An investigation to determine the effect of porosity concentration and location on elastic modulus is performed. Due to advancements in testing methods, the manufacturing and testing of microbeams to obtain mechanical response is possible through the use of focused ion beam technology. Meanwhile, rigorous analysis is required to enable accurate extraction of the elastic modulus from test data. First, a one-dimensional investigation with beam theory, Euler–Bernoulli and Timoshenko, was performed to estimate the modulus based on load-deflection curve. Second, a three-dimensional finite element (FE) model in Abaqus was developed to identify the effect of porosity concentration. Furthermore, the current work provided an accurate procedure to enable accurate extraction of the elastic modulus from load-deflection data. The use of macromodels such as beam theory and three-dimensional FE model enabled enhanced understanding of the effect of porosity on modulus.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


2012 ◽  
Vol 201-202 ◽  
pp. 741-744 ◽  
Author(s):  
Zhen Ning Hou ◽  
Jun Wu ◽  
Qing Wang ◽  
Hong Gen Tian ◽  
Nan Chao ◽  
...  

A finite element approach based on Ansys is developed to simulate stress intensity distribution in a three dimensional model of coupling clamp joint, which includes ferrules, pipe caps and bolts. The characteristics of stress intensity distributions of coupling clamp joint under strength pressure loading have been studied by means of the non-linear finite element method. The FE model can also predict the clamp quality and tolerances to be expected under different process conditions and define the most effective process parameters to influence the tolerances. The study could give us a better understanding on the mechanism and basis for optimization design of the coupling clamp joint.


Sign in / Sign up

Export Citation Format

Share Document