Wave propagation in a radially inhomogeneous cylindrical dielectric structure: A general analytical solution

1992 ◽  
Vol 5 (13) ◽  
pp. 675-679 ◽  
Author(s):  
Isabel V. Neves ◽  
António S. C. Fernandes
1975 ◽  
Vol 97 (3) ◽  
pp. 970-975
Author(s):  
D. T. Vaughan ◽  
L. D. Mitchell

This paper develops the general analytical solution to the design of mechanical components under fatigue loading. Its only limitation is that the overloading lines must be a straight line on the σa−σm diagram. The designer is free to select his own failure theory for the material he intends to use as well as to select his own fatigue fracture criterion.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck

Abstract Analytical solutions for thermal conduction problems are extremely important, particularly for verification of numerical codes. Temperatures and heat fluxes can be calculated very precisely, normally to eight or ten significant figures, even in situations involving large temperature gradients. It can be convenient to have a general analytical solution for a transient conduction problem in rectangular coordinates. The general solution is based on the principle that the three primary types of boundary conditions (prescribed temperature, prescribed heat flux, and convective) can all be handled using convective boundary conditions. A large convection coefficient closely approximates a prescribed temperature boundary condition and a very low convection coefficient closely approximates an insulated boundary condition. Since a dimensionless solution is used in this research, the effect of various values of dimensionless convection coefficients, or Biot number, are explored. An understandable concern with a general analytical solution is the effect of the choice of convection coefficients on the precision of the solution, since the primary motivation for using analytical solutions is the precision offered. An investigation is made in this study to determine the effects of the choices of large and small convection coefficients on the precision of the analytical solutions generated by the general convective formulation. Results are provided, in tablular and graphical form, to illustrate the effects of the choices of convection coefficients on the precision of the general analytical solution.


2019 ◽  
Vol 33 (2) ◽  
pp. 251-267 ◽  
Author(s):  
Xuanming Ding ◽  
Lubao Luan ◽  
Changjie Zheng ◽  
Guoxiong Mei ◽  
Hang Zhou

2011 ◽  
Vol 90-93 ◽  
pp. 1998-2001
Author(s):  
Wei Dong Lei ◽  
Xue Feng He ◽  
Rui Chen

Three cases for 1-D wave propagation in ideal elastic rock, through single rock joint and multiple parallel rock joints are used to verify 1-D wave propagation in rocks. For the case for 1-D wave propagation through single rock joint, the magnitude of transmission coefficient obtained from UDEC results is compared with that obtained from the analytical solution. For 1-D wave propagation through multiple parallel joints, the magnitude of transmission coefficient obtained from UDEC results is compared with that obtained from the method of characteristics. For all these cases, UDEC results agree well with results from the analytical solutions and the method of characteristics. From these verification studies, it can be concluded that UDEC is capable of modeling 1-D dynamic problems in rocks.


2008 ◽  
Vol 92 (1) ◽  
pp. 014103 ◽  
Author(s):  
Hanping Hu ◽  
Wei Zhang ◽  
Jun Xu ◽  
Yi Dong

1991 ◽  
Vol 244 ◽  
Author(s):  
Xiaoming Li ◽  
Paul F. Johnson

ABSTRACTDuring the recent years, a great variety of ion-exchange processes, including one-step or two-step electric field assisted ion-exchange processes, have been developed to fabricate different kinds of passive planar glass waveguides, e.g., surface waveguides, which correspond to surface maximum concentration, or buried waveguides, which correspond to inside maximum concentration [1,2,3]. Theoretical calculation of ionic concentration distribution has been of interest since refractive index is generally a linear function of concentration. A general analytical solution to calculate both surface and buried concentration distributions from different ion-exchange processes, however, has not yet been presented. In addition, traditional ion-exchange has been carried out only with constant surface concentration boundary conditions. Little attention has been paid, either experimentally or theoretically, to ion-exchange processes with variable boundary conditions. In fact, the time-dependent surface concentration is experimentally observed for the ion-exchange of GRIN glass in molten salt bath [4]. Very recently, a novel one-step technique [5,6] involving electric field assisted ion-exchange of Na+ in glass by Ag+ from molten AgNO3 bath with decaying silver concentration has been developed to produce buried Ag+ concentration profiles in glass. As the accurate and reproducible processes are very important for fabricating ion-exchanged glass waveguides, theoretical modeling and analysis on the new process are needed.In this paper, the one-dimensional field-assisted linear diffusion equation has been analytically solved by Laplace transformation to theoretically calculate concentration profiles produced by field enhanced ion-exchange process with exponentially decaying surface concentration boundary conditions. The applications of the solution to a variety of ion-exchange processes with different boundary or processing conditions for optical waveguide fabrication have been discussed. The theoretical results prove that the solution is a general analytical solution which can be used to calculate either surface concentration profiles or buried concentration profiles.


Sign in / Sign up

Export Citation Format

Share Document