Mass spectra of thiophene- and pyrrole-2-carboxyaldehyde condensation products prepared from ephedrine derivatives

1989 ◽  
Vol 24 (11) ◽  
pp. 1022-1024 ◽  
Author(s):  
Gordon L. Eggleton ◽  
Bill A. Cooper ◽  
Chris L. Sturch ◽  
Jonathan C. Trent ◽  
Richard B. Walker
1976 ◽  
Vol 54 (2) ◽  
pp. 270-274 ◽  
Author(s):  
John A. Findlay ◽  
Jiri Krepinsky ◽  
Foo Yu Shum ◽  
Wah Hung John Tam

A novel condensation reaction of 4-hydroxy-6-methyl-2-pyridone with aldehydes giving 4 has been explored. A number of by-products are accounted for. The mass spectra of the major condensation products are discussed.


2015 ◽  
Vol 12 (1) ◽  
pp. 3910-3918 ◽  
Author(s):  
Dr Remon M Zaki ◽  
Prof Adel M. Kamal El-Dean ◽  
Dr Nermin A Marzouk ◽  
Prof Jehan A Micky ◽  
Mrs Rasha H Ahmed

 Incorporating selenium metal bonded to the pyridine nucleus was achieved by the reaction of selenium metal with 2-chloropyridine carbonitrile 1 in the presence of sodium borohydride as reducing agent. The resulting non isolated selanyl sodium salt was subjected to react with various α-halogenated carbonyl compounds to afford the selenyl pyridine derivatives 3a-f  which compounds 3a-d underwent Thorpe-Ziegler cyclization to give 1-amino-2-substitutedselenolo[2,3-b]pyridine compounds 4a-d, while the other compounds 3e,f failed to be cyclized. Basic hydrolysis of amino selenolo[2,3-b]pyridine carboxylate 4a followed by decarboxylation furnished the corresponding amino selenolopyridine compound 6 which was used as a versatile precursor for synthesis of other heterocyclic compound 7-16. All the newly synthesized compounds were established by elemental and spectral analysis (IR, 1H NMR) in addition to mass spectra for some of them hoping these compounds afforded high biological activity.


2020 ◽  
Author(s):  
Jie Cheng ◽  
Yuchen Tang ◽  
Baoquan Bao ◽  
Ping Zhang

<p><a></a><a></a><a></a><a><b>Objective</b></a>: To screen all compounds of Agsirga based on the HPLC-Q-Exactive high-resolution mass spectrometry and find potential inhibitors that can respond to 2019-nCoV from active compounds of Agsirga by molecular docking technology.</p> <p><b>Methods</b>: HPLC-Q-Exactive high-resolution mass spectrometry was adopted to identify the complex components of Mongolian medicine Agsirga, and separated by the high-resolution mass spectrometry Q-Exactive detector. Then the Orbitrap detector was used in tandem high-resolution mass spectrometry, and the related molecular and structural formula were found by using the chemsipider database and related literature, combined with precise molecular formulas (errors ≤ 5 × 10<sup>−6</sup>) , retention time, primary mass spectra, and secondary mass spectra information, The fragmentation regularities of mass spectra of these compounds were deduced. Taking ACE2 as the receptor and deduced compounds as the ligand, all of them were pretreated by discover studio, autodock and Chem3D. The molecular docking between the active ingredients and the target protein was studied by using AutoDock molecular docking software. The interaction between ligand and receptor is applied to provide a choice for screening anti-2019-nCoV drugs.</p> <p><b>Result</b>: Based on the fragmentation patterns of the reference compounds and consulting literature, a total of 96 major alkaloids and stilbenes were screened and identified in Agsirga by the HPLC-Q-Exactive-MS/MS method. Combining with molecular docking, a conclusion was got that there are potential active substances in Mongolian medicine Agsirga which can block the binding of ACE2 and 2019-nCoV at the molecular level.</p>


Sign in / Sign up

Export Citation Format

Share Document