Mechanical properties, thermal stability, sound absorption, and flame retardancy of rigid PU foam composites containing a fire‐retarding agent: Effect of magnesium hydroxide and aluminum hydroxide

2019 ◽  
Vol 30 (8) ◽  
pp. 2045-2055 ◽  
Author(s):  
Hao‐Kai Peng ◽  
XiaoXiao Wang ◽  
Ting‐Ting Li ◽  
Ching‐Wen Lou ◽  
YanTing Wang ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1028 ◽  
Author(s):  
Zhi-Qi Liu ◽  
Zhi Li ◽  
Yun-Xian Yang ◽  
Yan-Ling Zhang ◽  
Xin Wen ◽  
...  

This study was aimed at investigating the effects of carbon nanomaterials with different geometries on improving the flame retardancy of magnesium hydroxide–filled ethylene-vinyl acetate (EM). The thermal stability and flame retardancy were studied by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, and cone calorimeter test (CCT). The in situ temperature monitoring system and interrupted combustion offered direct evidence to link flame retardancy and composite structure. Results demonstrated that carbon nanomaterials enhanced the thermal stability and fire safety of EM. The geometry of carbon nanomaterials played a key role in synergistic flame retardancy of EM, with the flame-retardant order of carbon nanotube > nanoscale carbon black > graphene. Based on an online temperature monitoring system and interrupted combustion test, one-dimensional carbon nanotube was more inclined to form the network structure synergistically with magnesium hydroxide in ethylene-vinyl acetate, which facilitated the generation of more continuous char structure during combustion. In parallel, the mechanical property was characterized by a tensile test and dynamic mechanical analysis (DMA). The incorporation of carbon nanomaterials presented a limited effect on the mechanical properties of the EM system.


2021 ◽  
pp. 009524432110290
Author(s):  
Mukaddes Sevval Cetin ◽  
Ozan Toprakci ◽  
Omer Suat Taskin ◽  
Abdullah Aksu ◽  
Hatice Aylin Karahan Toprakci

This study focuses on the fabrication and characterization of vermiculite-filled flexible polymer composites. Exfoliated vermiculite was incorporated into triblock thermoplastic elastomer copolymer, styrene- b-(ethylene- co-butylene)- b-styrene (SEBS), at various levels from 1 to 15 wt% by a high shear mixer. The composite films were obtained by the combination of solvent casting and compression molding. The morphological, structural, thermal, and mechanical properties and contact angle of the composites were determined. Some micro-morphological differences were observed between the samples and the difference was assumed to be caused by high shear mixing and filler concentration. High shear mixing was found effective in terms of the detachment of vermiculite layers at all concentrations. However, at low filler loading, that behavior was more obvious. At 1 wt% filler concentration, mechanical properties increased that was probably caused by good filler-matrix interaction stemmed from smaller particle size. At higher vermiculite concentrations, fillers found to show agglomerations that led to a decrease in mechanical strength and strain at break. Elastic and secant modulus showed an increasing trend. Contact angle measurements were carried out to determine the oleophilic character of the samples. An increase in the vermiculite content resulted in higher oleophilic character and the lowest contact angle was obtained at 15 wt% VMT loading. In addition to these, thermal stability, thermal dimensional stability and flame retardancy were improved by the incorporation of VMT. 15 wt% vermiculite-filled sample showed the best performance in terms of thermal stability and flame retardancy.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Weidi He ◽  
Ying Zhou ◽  
Xiaolang Chen ◽  
Jianbing Guo ◽  
Dengfeng Zhou ◽  
...  

In this work, the ethylene-propylene-diene monomer/polypropylene (EPDM/PP) thermoplastic elastomer filled with intumescent flame retardants (IFR) is fabricated by melting blend. The IFR are constituted with melamine phosphate-pentaerythritol (MP/PER) by compounding and reactive extruding, respectively. The effects of two kinds of MP/PER with different contents on the thermal stability, flame retardancy, and mechanical properties of materials are investigated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94, cone calorimeter test (CCT), and scanning electron microscopy (SEM). FTIR results show that the reactive extruded MP/PER partly generates melamine pyrophosphate (MPP) compared with compound masterbatches. TGA data indicate that the best thermal stability is achieved when the molar ratio of MP/PER reaches 1.8. All the reactive samples show a higher flame retardancy than compound ones. The CCT results also exhibit the same trend as above in heat release and smoke production rate. The EPDM/PP composites filled with 30 and 35% reactive MP/PER exhibit the improved flame retardancy but become stiffer and more brittle. SEM photos display that better dispersion and smaller particle size are obtained for reactive samples.


Sign in / Sign up

Export Citation Format

Share Document