Effect of process parameters on thermal and mechanical properties of polymer‐based composites using fused filament fabrication

2021 ◽  
Author(s):  
Khaled Benfriha ◽  
Mohammad Ahmadifar ◽  
Mohammadali Shirinbayan ◽  
Abbas Tcharkhtchi
2020 ◽  
Vol 60 (8) ◽  
pp. 1822-1831 ◽  
Author(s):  
Hamidreza Vanaei ◽  
Mohammadali Shirinbayan ◽  
Michael Deligant ◽  
Kaddour Raissi ◽  
Joseph Fitoussi ◽  
...  

2021 ◽  
pp. 095400832110419
Author(s):  
Lovin K John ◽  
Ramu Murugan ◽  
Sarat Singamneni

The development of fused filament fabrication has extended the range of application of additive manufacturing in various areas of research. However, the mechanical strength of the fused filament fabrication–printed parts were considerably lower than that of parts fabricated by other conventional methods, owing to the observed anisotropic behaviour and formation of voids by weak interlayer diffusion. Intense studies on the effect of design and process parameters of the printed parts on the mechanical properties have been done, whereas studies on the effect of build orientations and raster patterns needs special concern. The main aim of this work is to fabricate parts printed using quasi-isotropic laminate arrangement of rasters, achieved by a raster layup of [45/0/−45/90]s, and to compare their mechanical properties with those of the commonly used 0°/90° (cross) and 45°/−45° (crisscross) raster oriented parts. The quasi-isotropic–oriented samples were observed with improved mechanical behaviour in tensile, compressive, flexural and impact tests compared to the commonly employed raster orientations.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1587
Author(s):  
Daniyar Syrlybayev ◽  
Beibit Zharylkassyn ◽  
Aidana Seisekulova ◽  
Mustakhim Akhmetov ◽  
Asma Perveen ◽  
...  

Additive Manufacturing is currently growing fast, especially fused deposition modeling (FDM), also known as fused filament fabrication (FFF). When manufacturing parts use FDM, there are two key parameters—strength of the part and dimensional accuracy—that need to be considered. Although FDM is a popular technology for fabricating prototypes with complex geometry and other part product with reduced cycle time, it is also limited by several drawbacks including inadequate mechanical properties and reduced dimensional accuracy. It is evident that part qualities are greatly influenced by the various process parameters, therefore an extensive review of the effects of the following process parameters was carried out: infill density, infill patterns, extrusion temperature, layer thickness, nozzle diameter, raster angle and build orientation on the mechanical properties. It was found from the literature that layer thickness is the most important factor among the studied ones. Although manipulation of process parameters makes significant differences in the quality and mechanical properties of the printed part, the ideal combination of parameters is challenging to achieve. Hence, this study also includes the influence of pre-processing of the printed part to improve the part strength and new research trends such as, vacuum-assisted FDM that has shown to improve the quality of the printing due to improved bonding between the layers. Advances in materials and technologies that are currently under development are presented. For example, the pre-deposition heating method, using an IR lamp of other technologies, shows a positive impact on the mechanical properties of the printed parts.


2017 ◽  
Vol 742 ◽  
pp. 395-400 ◽  
Author(s):  
Florian Staab ◽  
Frank Balle ◽  
Johannes Born

Multi-material-design offers high potential for weight saving and optimization of engineering structures but inherits challenges as well, especially robust joining methods and long-term properties of hybrid structures. The application of joining techniques like ultrasonic welding allows a very efficient design of multi-material-components to enable further use of material specific advantages and are superior concerning mechanical properties.The Institute of Materials Science and Engineering of the University of Kaiserslautern (WKK) has a long-time experience on ultrasonic welding of dissimilar materials, for example different kinds of CFRP, light metals, steels or even glasses and ceramics. The mechanical properties are mostly optimized by using ideal process parameters, determined through statistical test planning methods.This gained knowledge is now to be transferred to application in aviation industry in cooperation with CTC GmbH and Airbus Operations GmbH. Therefore aircraft-related materials are joined by ultrasonic welding. The applied process parameters are recorded and analyzed in detail to be interlinked with the resulting mechanical properties of the hybrid joints. Aircraft derived multi-material demonstrators will be designed, manufactured and characterized with respect to their monotonic and fatigue properties as well as their resistance to aging.


Sign in / Sign up

Export Citation Format

Share Document