Dynamic modeling of a gas pressure control system for a gas-assisted injection molding process

2000 ◽  
Vol 40 (3) ◽  
pp. 583-594 ◽  
Author(s):  
Sher-Meng Chao ◽  
Shih-Ming Wang ◽  
Shia-Chung Chen
2011 ◽  
Vol 143-144 ◽  
pp. 494-498
Author(s):  
Ke Ming Zi ◽  
Li Heng Chen

With finite element analysis software Moldflow, numerical simulation and studies about FM truck roof handle were conducted on gas-assisted injection molding process. The influences of melt pre-injection shot, gas pressure, delay time and melt temperature were observed by using multi-factor orthogonal experimental method. According to the analysis of the factors' impact on evaluation index, the optimized parameter combination is obtained. Therefore the optimization design of technological parameters is done. The results show that during the gas-assisted injection molding, optimum pre-injection shot is 94%,gas pressure is 15MPa,delay time is 0.5s,melt temperature is 240 oC. This study provided a more practical approach for the gas-assisted injection molding process optimization.


2019 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
Chun-Ying Lin ◽  
Fang-Cheng Shen ◽  
Kuo-Tsai Wu ◽  
Huei-Huang Lee ◽  
Sheng-Jye Hwang

The present study constructs a servo–hydraulic system to simulate the filling and packing processes of an injection molding machine. Experiments are performed to evaluate the velocity and position control of the system in the filling stage and the pressure control in the packing stage. The results demonstrate that the proposed system meets the required performance standards when operated with the proportional-integral–derivative (PID) controller under a sampling frequency of 1000 Hz.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 555
Author(s):  
Jia-Chen Fan-Jiang ◽  
Chi-Wei Su ◽  
Guan-Yan Liou ◽  
Sheng-Jye Hwang ◽  
Huei-Huang Lee ◽  
...  

Injection molding is a popular process for the mass production of polymer products, but due to the characteristics of the injection process, there are many factors that will affect the product quality during the long fabrication processes. In this study, an adaptive adjustment system was developed by C++ programming to adjust the V/P switchover point and injection speed during the injection molding process in order to minimize the variation of the product weight. Based on a series of preliminary experiments, it was found that the viscosity index and peak pressure had a strong correlation with the weight of the injection-molded parts. Therefore, the viscosity index and peak pressure are used to guide the adjustment in the presented control system, and only one nozzle pressure sensor is used in the system. The results of the preliminary experiments indicate that the reduction of the packing time and setting enough clamping force can decrease the variation of the injected weight without turning on the adaptive control system; meanwhile, the master pressure curve obtained from the preliminary experiment was used as the control target of the system. With this system, the variation of the product weight and coefficient of variation (CV) of the product weight can be decreased to 0.21 and 0.05%, respectively.


2009 ◽  
Vol 82 (1) ◽  
pp. 62-93 ◽  
Author(s):  
A. Arrillaga ◽  
A. M. Zaldua ◽  
R. M. Atxurra ◽  
A. S. Farid ◽  
A. S. Farid

Abstract In order to fill the mold in a rubber injection molding process, it is necessary to inject the material into the closed mold. Rubber is usually injected under ram speed control, but it can be also injected under pressure control. In the present study, we have recorded the signals of pressure at three points during the filling of a spiral shape part. The behaviors of two rubber compounds have been studied using a variety of combinations of process conditions (including mold temperature, mass temperature, ram speed and injection molding with and without pressure holding stage). In all conditions, the transducer located in proximity to the gate exhibits pressure decay at the last stage of mold filling. Initial CAE simulations have been carried out using Moldflow software to check the capability of this sort of software to calculate pressure decay during the filling stage.


Sign in / Sign up

Export Citation Format

Share Document