Effect of processing parameters on flexural properties of 3D ‐printed polyetherketoneketone using fused deposition modeling

Author(s):  
Chen Xu ◽  
Kangjie Cheng ◽  
Yunfeng Liu ◽  
Russell Wang ◽  
Xianfeng Jiang ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1094 ◽  
Author(s):  
Valentina Mazzanti ◽  
Lorenzo Malagutti ◽  
Francesco Mollica

As biodegradable thermoplastics are more and more penetrating the market of filaments for fused deposition modeling (FDM) 3D printing, fillers in the form of natural fibers are convenient: They have the clear advantage of reducing cost, yet retaining the filament biodegradability characteristics. In plastics that are processed through standard techniques (e.g., extrusion or injection molding), natural fibers have a mild reinforcing function, improving stiffness and strength, it is thus interesting to evaluate whether the same holds true also in the case of FDM produced components. The results analyzed in this review show that the mechanical properties of the most common materials, i.e., acrylonitrile-butadiene-styrene (ABS) and PLA, do not benefit from biofillers, while other less widely used polymers, such as the polyolefins, are found to become more performant. Much research has been devoted to studying the effect of additive formulation and processing parameters on the mechanical properties of biofilled 3D printed specimens. The results look promising due to the relevant number of articles published in this field in the last few years. This notwithstanding, not all aspects have been explored and more could potentially be obtained through modifications of the usual FDM techniques and the devices that have been used so far.


Author(s):  
Abhay Mishra ◽  
Vivek Srivastava ◽  
Nitin Gupta

Abstract In this paper the effect of process parameters on the tensile and flexural properties has been analyzed. We have used commercially available FDM 3D printer and material (Carbon fiber -PLA). When various processing parameters, especially when no linear processing parameters are defined, the complete factor design of experiments (DOE) is hard to research. Furthermore, a large number of samples are needed to completely exploit the exact processing parameters. The key effects of four processing parameters for the FDM process, i.e. layer height, infill density, printing speed and infill pattern, are examined in this document in the DOE of Taguchi. The mechanical characteristics of the fabricated FDM components express the power of the processing parameters. We have used the Taguchi L9 range of 9 runs with three specimens each to present the work, so 54 different processes were used to make a total of 54 specimens. In comparison to the 3D CAD model, the measurements of the manufactured specimens were tested according to standard ASTM D638 and ASTM D790. Variance analysis (ANOVA) is generated using Design Expert tools in order to assess the importance of variables and their tensile and flexural strength interactions. After doing Variance analysis (ANOVA) we got the exact parameters in which the mechanical properties are higher.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025223
Author(s):  
Thomas M. Calascione ◽  
Nathan A. Fischer ◽  
Thomas J. Lee ◽  
Hannah G. Thatcher ◽  
Brittany B. Nelson-Cheeseman

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


Sign in / Sign up

Export Citation Format

Share Document