Investigation of fused deposition modeling processing parameters of 3D PLA specimens by an experimental design methodology

2019 ◽  
Vol 61 (5) ◽  
pp. 405-410 ◽  
Author(s):  
Ahu Çelebi
2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


2017 ◽  
Vol 23 (5) ◽  
pp. 869-880 ◽  
Author(s):  
Ying-Guo Zhou ◽  
Bei Su ◽  
Lih-sheng Turng

Purpose Although the feasibility and effectiveness of the fused deposition modeling (FDM) method have been proposed and developed, studies of applying this technology to various materials are still needed for researching its applicability, especially with regard to polymer blends and composites. The purpose of this paper is to study the deposition-induced effect and the effect of compatibilizers on the mechanical properties of polypropylene and polycarbonate (PP/PC) composites. Design/methodology/approach For this purpose, three different deposition modes for PP/PC composites with or without compatibilizers were used for the FDM method and tested for tensile properties. Also, parts with the same materials were made by injection molding and used for comparison. In addition, different deposition speeds were used to investigate the different deposition-induced effects. Furthermore, the behavior of the mechanical properties was clarified with scanning electron microscope images of the fracture surfaces. Findings The research results suggest that the deposition orientation has a significant influence on the mechanical behavior of PP/PC composite FDM parts. The results also indicate that there is a close relationship between the mechanical properties and morphological structures which are deeply influenced by compatibilization. Compared with injection molded parts, the ductility of the FDM parts can be dramatically improved due to the formation of fibrils and micro-fibrils by the deposition induced during processing. Originality/value This is the first paper to investigate a PP/PC composite FDM process. The results of this paper verified the applicability of PP/PC composites to FDM technology. It is also the first time that the deposition-induced effect during FDM has been investigated and studied.


Author(s):  
Anggit Prakasa ◽  
Setya Permana Sutisna ◽  
Anton Royanto Ahmad

<p>The 3D printers process is applied to create prototype components, but at the last 3D Printers are often applied as last products. So, high accuracy is required in this case. In this research will find the optimal<br />setting of the dimensional accuracy 3D printers based fused deposition modeling. The method used is<br />the Taguchi method, the reason for using this method its efficiency, this is because the Orthogonal<br />Array matrix requires less number of experiments than the classical experimental design. Analysis of<br />Variance is also needed in this method to see the factors that significantly influence the response<br />variable. The results of this study indicate that the factors that significantly influence is printspeed by<br />contributing 53.08%, flowrate contributes 16.4%, and temperature heater block contributes 3.85% and<br />optimal setting is temperature heater block 190º, print speed 60mm/s and flowrate 6.28 mm3/s. (A1,<br />C3 dan D2).</p>


Author(s):  
Jiaqi Lyu ◽  
Souran Manoochehri

The dimensional accuracy of fused deposition modeling (FDM) machines is dependent on errors caused by processing parameters and machine motions. In this study, an integrated error model combining these effects is developed. Extruder temperature, layer thickness, and infill density are selected as parameters of this study for three FDM machines, namely, Flashforge Finder, Ultimaker 2 go, and XYZ da Vinci 2.0 Duo. Experiments have been conducted using Taguchi method and the interactions between processing parameters are analyzed. Based on the dimensional deviations between fabricated parts and the computer aided design (CAD) geometry, a set of coefficients for the integrated error model are calculated to characterize each machine. Based on the results of the integrated error model, the original CAD geometry is optimized for fabrication accuracy on each machine. New parts are fabricated using the optimized CAD geometries. Through comparing the dimensional deviations of parts fabricated before and after optimization, the effectiveness of the integrated error model is analyzed and demonstrated for the three FDM machines.


2021 ◽  
Vol 40 (1) ◽  
pp. 1-11
Author(s):  
Xiaohui Song ◽  
Dengwen Shi ◽  
Pinghui Song ◽  
Xingguo Han ◽  
Qingsong Wei ◽  
...  

Abstract In this paper, poly(ether ether ketone) (PEEK) scaffold was manufactured using the fused deposition modeling (FDM) technology with a modified platform. The effect of processing parameters of FDM on the porosity and compressive strength of PEEK scaffold with uniform pores (0.8 mm of diameter) was optimized through Taguchi methodology. With the determined parameters, four kinds of PEEK scaffolds with gradient pores (0.4–0.8 mm, 0.6–1.0 mm, 0.8–1.2 mm, and 1.2–2.0 mm) were manufactured. The scaffolds were investigated using scanning electron microscopy. The results showed that the pores of scaffolds were interconnected with rough surface, which can allow the attachment, migration, and differentiation of cells for bone forming. The tensile strength, compressive max strength, and compressive yield strength of scaffolds were between 18 and 35 MPa, 197.83 and 370.42 MPa, and 26 and 36 MPa, respectively. The mechanical properties of the scaffolds can satisfy the loading requirements of human bones. Therefore, the PEEK scaffolds have a potential to be used in tissue engineering as implants.


2019 ◽  
Vol 17 (01) ◽  
pp. 1844002 ◽  
Author(s):  
Jun Liu ◽  
Kelly L. Anderson ◽  
N. Sridhar

Among the many mature and commercial AM technologies, fused deposition modeling (FDM) is a popular technology commonly used for modeling, prototyping, and production applications. In this process, a filament thermoplastic material is fed into a liquefier chamber, melted to a liquid state, and deposited layer by layer through a nozzle to form the 3D part. As a result, part can be designed in a more freedom way, and fabricated quickly and rapidly to a desired shape. However, different combination of processing parameters may influence the final part quality greatly, which hinders wider application of this technique. In order to investigate the influence of processing parameters on the final part quality, a viscoelastic multi-phase solver is developed, with capability for dynamic meshing and based on OpenFOAM. The solver directly simulates the deposition process of FDM. By implementing this solver for different boundary conditions and geometry, we can evaluate the printed part quality for varied processing conditions. More importantly, the tool enables efficient optimization of the processing conditions for specified material parameters and desired print quality.


Sign in / Sign up

Export Citation Format

Share Document