History of protein-protein interactions: From egg-white to complex networks

PROTEOMICS ◽  
2012 ◽  
Vol 12 (10) ◽  
pp. 1478-1498 ◽  
Author(s):  
Pascal Braun ◽  
Anne-Claude Gingras
Author(s):  
Erinna F. Lee ◽  
W. Douglas Fairlie

The discovery of a new class of small molecule compounds that target the BCL-2 family of anti-apoptotic proteins is one of the great success stories of basic science leading to translational outcomes in the last 30 years. The eponymous BCL-2 protein was identified over 30 years ago due to its association with cancer. However, it was the unveiling of the biochemistry and structural biology behind it and its close relatives’ mechanism(s)-of-action that provided the inspiration for what are now known as ‘BH3-mimetics’, the first clinically approved drugs designed to specifically inhibit protein–protein interactions. Herein, we chart the history of how these drugs were discovered, their evolution and application in cancer treatment.


2019 ◽  
Author(s):  
Anderson F. Brito ◽  
John W. Pinney

ABSTRACTThe evolution of protein-protein interactions (PPIs) is directly influenced by the evolutionary histories of the genes and the species encoding the interacting proteins. When it comes to PPIs of host-pathogen systems, the complexity of their evolution is much higher, as two independent, but biologically associated entities, are involved. In this work, an integrative approach combining phylogenetics, tree reconciliations, ancestral sequence reconstructions, and homology modelling is proposed for studying the evolution of host-pathogen PPIs. As a case study, we analysed the evolution of interactions between herpesviral glycoproteins gD/gG and the cell membrane proteins nectins. By modelling the structures of more than 12,000 ancestral states of these virus-host complexes it was found that in early times of their evolution, these proteins were unable to interact, most probably due to electrostatic incompatibilities between their interfaces. After the event of gene duplication that gave rise to a paralog of gD (known as gG), both protein lineages evolved following distinct functional constraints, with most gD reaching high binding affinities towards nectins, while gG lost such ability, most probably due to a process of neofunctionalization. Based on their favourable interaction energies (negative ΔG), it is possible to hypothesize that apart from nectins 1 and 2, some alphaherpesviruses might also use nectins 3 and 4 as cell receptors. These findings show that the proposed integrative method is suitable for modelling the evolution of host-pathogen protein interactions, and useful for raising new hypotheses that broaden our understanding about the evolutionary history of PPIs, and their molecular functioning.


2021 ◽  
Vol 18 (175) ◽  
pp. 20200859
Author(s):  
Manjula P. Mummadisetti ◽  
Jeana L. Drake ◽  
Paul G. Falkowski

Coral skeletons are materials composed of inorganic aragonitic fibres and organic molecules including proteins, sugars and lipids that are highly organized to form a solid biomaterial upon which the animals live. The skeleton contains tens of proteins, all of which are encoded in the animal genome and secreted during the biomineralization process. While recent advances are revealing the functions and evolutionary history of some of these proteins, how they are spatially arranged in the skeleton is unknown. Using a combination of chemical cross-linking and high-resolution tandem mass spectrometry, we identify, for the first time, the spatial interactions of the proteins embedded within the skeleton of the stony coral Stylophora pistillata . Our subsequent network analysis revealed that several coral acid-rich proteins are invariably associated with carbonic anhydrase(s), alpha-collagen, cadherins and other calcium-binding proteins. These spatial arrangements clearly show that protein–protein interactions in coral skeletons are highly coordinated and are key to understanding the formation and persistence of coral skeletons through time.


2016 ◽  
Vol 44 (1) ◽  
pp. 279-285 ◽  
Author(s):  
M. Merced Malabanan ◽  
Raymond D. Blind

Inositol polyphosphate multikinase (IPMK, ipk2, Arg82, ArgRIII) is an inositide kinase with unusually flexible substrate specificity and the capacity to partake in many functional protein–protein interactions (PPIs). By merging these two activities, IPMK is able to execute gene regulatory functions that are very unique and only now beginning to be recognized. In this short review, we present a brief history of IPMK, describe the structural biology of the enzyme and highlight a few recent discoveries that have shed more light on the role IPMK plays in inositide metabolism, nuclear signalling and transcriptional regulation.


2019 ◽  
Author(s):  
Jithin K. Sreedharan ◽  
Krzysztof Turowski ◽  
Wojciech Szpankowski

AbstractGraph models often give us a deeper understanding of real-world networks. In the case of biological networks they help in predicting the evolution and history of biomolecule interactions, provided we map properly real networks into the corresponding graph models. In this paper, we show that for biological graph models many of the existing parameter estimation techniques overlook the critical property of graph symmetry (also known formally as graph automorphisms), thus the estimated parameters give statistically insignificant results concerning the observed network. To demonstrate it and to develop accurate estimation procedures, we focus on the biologically inspired duplication-divergence model, and the up-to-date data of protein-protein interactions of seven species including human and yeast. Using exact recurrence relations of some prominent graph statistics, we devise a parameter estimation technique that provides the right order of symmetries and uses phylogenetically old proteins as the choice of seed graph nodes. We also find that our results are consistent with the ones obtained from maximum likelihood estimation (MLE). However, the MLE approach is significantly slower than our methods in practice.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

1974 ◽  
Vol 31 (03) ◽  
pp. 403-414 ◽  
Author(s):  
Terence Cartwright

SummaryA method is described for the extraction with buffers of near physiological pH of a plasminogen activator from porcine salivary glands. Substantial purification of the activator was achieved although this was to some extent complicated by concomitant extraction of nucleic acid from the glands. Preliminary characterization experiments using specific inhibitors suggested that the activator functioned by a similar mechanism to that proposed for urokinase, but with some important kinetic differences in two-stage assay systems. The lack of reactivity of the pig gland enzyme in these systems might be related to the tendency to protein-protein interactions observed with this material.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document