Polysoaps. III. Influence of solubilized benzene on reduced viscosity of an n-dodecyl bromide addition compound of poly-2-vinylpyridine

1952 ◽  
Vol 9 (4) ◽  
pp. 295-308 ◽  
Author(s):  
Lionel H. Layton ◽  
Earl G. Jackson ◽  
Ulrich P. Strauss
2018 ◽  
Vol 56 (4) ◽  
pp. 467
Author(s):  
Thu Thuy Thi Tran ◽  
Ha Thi Dinh ◽  
Phương Lan Doan ◽  
Long Quoc Pham ◽  
Quang Dai Ngo

Eight polyhydroxylated cholesterol derivatives (1-8) were prepared from cholesterol, using oxidative reagents as SeO2, OsO4/NMO, HCOOH/H2O2 and BH3/ H2O2. Their structures were elucidated by using physical methods including NMR 1D and 2D. These compounds were evaluated against two cancer cell lines (Hep-G2, T98). Compounds 2, 4 and 8 inhibits human hepatocellular carcinoma cell line (Hep-G2) with IC50 4.69, 4.98 and 2.89 µg/mL, respectively. In addition, compound 8 exhibited strong cytotoxicity against T98 cell line (glioblastoma) with IC50 = 2.28 μM.


2020 ◽  
Author(s):  
Matteo Tiecco ◽  
Irene Di Guida ◽  
Pier Luigi Gentili ◽  
Raimondo Germani ◽  
Carmela Bonaccorso ◽  
...  

<div><div><div><p>The structural features of a series of diverse Deep Eutectic Solvents (DESs) have been investigated and characterized by means of two fluorescent probes. The spectral and photophysical properties of the latter are strictly dependent on the experienced environment, so that they can provide insights into the polarity, viscosity, hydrogen-bond network, and micro-heterogeneity of the various DESs.</p><p>In fact, the investigated DESs exhibit a variety of properties with regards to their hydrophilicity, acidity, and hydrogen-bond ability, and these details were deeply probed by the two fluorescent molecules. The effect of the addition of water, which is a key strategy for tuning the properties of these structured systems, was also tested. In particular, the excited state dynamics of the probes, measured by femtosecond-resolved transient absorption, proved instrumental in understanding the changes in the structural properties of the DESs, namely reduced viscosity and enhanced heterogeneity, as the water percentage increases. Differences between the various DESs in terms of both local microheterogeneity and bulk viscosity also emerged from the peculiar multi-exponential solvation dynamics undergone by the excited states of the probes.</p></div></div></div>


2020 ◽  
Author(s):  
Matteo Tiecco ◽  
Irene Di Guida ◽  
Pier Luigi Gentili ◽  
Raimondo Germani ◽  
Carmela Bonaccorso ◽  
...  

<div><div><div><p>The structural features of a series of diverse Deep Eutectic Solvents (DESs) have been investigated and characterized by means of two fluorescent probes. The spectral and photophysical properties of the latter are strictly dependent on the experienced environment, so that they can provide insights into the polarity, viscosity, hydrogen-bond network, and micro-heterogeneity of the various DESs.</p><p>In fact, the investigated DESs exhibit a variety of properties with regards to their hydrophilicity, acidity, and hydrogen-bond ability, and these details were deeply probed by the two fluorescent molecules. The effect of the addition of water, which is a key strategy for tuning the properties of these structured systems, was also tested. In particular, the excited state dynamics of the probes, measured by femtosecond-resolved transient absorption, proved instrumental in understanding the changes in the structural properties of the DESs, namely reduced viscosity and enhanced heterogeneity, as the water percentage increases. Differences between the various DESs in terms of both local microheterogeneity and bulk viscosity also emerged from the peculiar multi-exponential solvation dynamics undergone by the excited states of the probes.</p></div></div></div>


1957 ◽  
Vol 35 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Morton A. Golub

The shear dependence of viscosity of benzene solutions of natural rubber was studied at rates of shear from about 500 down to less than 1 sec.−1. Measurements involved following the change of pressure head with time of the various solutions flowing in a capillary, U-tube viscometer. Curvature in the plots of the logarithm of pressure head versus time indicated non-Newtonian flow. From such curves, reduced viscosity data over the above-mentioned shear range were readily derived. As a check, data over the range 100–500 sec.−1 were also obtained with a five-bulb viscometer of the Krigbaum–Flory type, and these data overlapped those obtained with the U tube. The reduced viscosity increased very sharply with decrease in gradient, making extrapolation to the viscosity axis quite unreliable. However, a theoretical relation proposed by Bueche fitted the composite data rather well. This work furnished a nice technique for determining the zero shear reduced viscosity (ηap/c)0 without the necessity of performing an uncertain extrapolation: evaluate the parameters of the Bueche formula which best satisfies the experimental data over a fairly wide range of shear rates, and then calculate (ηap/c)0 directly.


2002 ◽  
Vol 81 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Swapnil Bhargava ◽  
M. P. Nandakumar ◽  
Anindya Roy ◽  
Kevin S. Wenger ◽  
Mark R. Marten

2013 ◽  
Vol 357-360 ◽  
pp. 968-971 ◽  
Author(s):  
Ren Juan Sun ◽  
Zhi Qin Zhao ◽  
Da Wei Huang ◽  
Gong Feng Xin ◽  
Shan Shan Wei ◽  
...  

The effect of fly ash and nanoCaCO3 on the viscosity of pastes was studied. The rheological value of cement paste was determined by the rotation rheometer NXS-11B. In the study, five different dosages (0%, 20%, 30%, 40%, and 50%) of fly ash and three levels of nanoCaCO3, 0.5%, 1%, and 2.5%, were considered. Viscosity of the pastes, made with fly ash and nanoCaCO3 at a constant water-to-binder ratio of 0.35, were measured and analyzed. The results indicate that the pastes with fly ash or/and nanoCaCO3 still fit the Bingham model. The addition of fly ash reduced viscosity, however, the addition of nanoCaCO3 increased viscosity. The effect of nanoCaCO3 is more significantly than fly ash on viscosity.


Sign in / Sign up

Export Citation Format

Share Document