Structure and morphology of nanocomposite films prepared from polyvinyl alcohol and silver nitrate: Influence of thermal treatment

2007 ◽  
Vol 45 (13) ◽  
pp. 2657-2672 ◽  
Author(s):  
S. Clémenson ◽  
L. David ◽  
E. Espuche
2020 ◽  
Vol 998 ◽  
pp. 96-101
Author(s):  
Sirinan Ratchawong ◽  
Sirirat Wacharawichanant ◽  
Siriporn Tanodekaew

In this research, titanium dioxide (TiO2) nanoparticles were immobilized into polyvinyl alcohol (PVA) matrix without and with surfactants via solution casting film combined with thermal treatment method. The dispersion and distribution of TiO2 nanoparticles presented by scanning electron microscopy (SEM) showed the uniform distribution of TiO2 nanoparticles in PVA matrix with surfactant. Fourier-transform infrared spectroscopy (FTIR) showed increasing intensity peak at 560-800 cm-1 corresponding to Ti-O stretching vibration indicating interaction between PVA and TiO2 after thermal treatment. X-ray diffraction (XRD) result showed peak of PVA crystal structure due to the thermal treatment, and the addition of surfactant could decrease the average crystallite size of TiO2 in PVA/TiO2 nanocomposite films. Photocatalytic activity was determined from the film efficiency on removal of methylene blue (MB) under ultraviolet (UV). The results showed the greater MB removal efficiency of the PVA/TiO2 nanocomposite films with surfactant and thermal treatment than those without surfactant and thermal treatment.


2021 ◽  
Author(s):  
Yamanappagouda Amaregouda ◽  
Kantharaju Kamanna ◽  
Tilak Gasti ◽  
Vijay Kumbar

Abstract Herein, we described novel biogenic preparation of the CuO nanorods and its surface modification with L-alanine amino acid accelerated by microwave irradiation. The effect of surface functionalized CuO nanorods on the polyvinyl alcohol/carboxymethyl cellulose film physico-mechanical properties were investigated through various characterization techniques. The tensile strength was improved from 28.58 ± 0.73 MPa to 43.40 ± 0.93 MPa, UV shielding ability and barrier to the water vapors were highly enhanced when PVA/CMC matrices filled with 8 wt% of CuO-L-alanine. In addition, the prepared films exhibited acceptable overall migration limit and readily undergoes soil burial degradation. Nevertheless, CuO-L-alanine incorporated films showed potent antioxidant activity against DPPH radicals and had high antibacterial activity against Staphylococcus aureus and Escherichia coli, and antifungal activity against Candida albicans and Candida tropicalis. Furthermore, the nanocomposite films showed negligible cytotoxic effect on HEK293 and Caco-2 cell lines. In these contexts, the developed nanocomposite films can be implementing as an active food packaging material.


2019 ◽  
Vol 944 ◽  
pp. 650-656
Author(s):  
Ming Rui Zhang ◽  
Yuan Qin ◽  
Dao Zhang ◽  
Guang Yuan Wang ◽  
Sen Yang

The liquid phase reduction-heat treatment has been used to prepare V2O3nanoparticles in this paper. It is a novel method that the precursor was developed by Oxalic acid dehydrate (H2C2O4·2H2O) reduction of V2O5powder in anhydrous ethanol. V2O3nanoparticles were successfully obtained by thermal treatment of the precursor. The phase, composition, structure, and morphology of the as-obtained samples were verified by XRD, XPS, SEM and TEM measurements. Meanwhile, the possible formation mechanism of V2O3in the heat-treatment is briefly discussed by analyzing the DSC.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Tiehu Li ◽  
Yingde Cui ◽  
Minghao Yi ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing graphene oxide (GO) (0.5, 1, 2, and 3 wt%) or graphene (0.5, 1, 2, and 3 wt%) were prepared using a solvent casting method. The scanning electron microscopy results indicated that the dispersion of GO throughout the film matrix was better than that of graphene. The successful formation of new hydrogen bonds between the film matrix and GO was confirmed through the use of Fourier-transform infrared spectroscopy. The tensile strength, elastic modulus, and initial degradation temperature of the films increased, whereas the total soluble mass, water vapor permeability, oxygen permeability, and light transmittance decreased following GO or graphene incorporation. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris-based blend films in the packaging field.


2019 ◽  
Vol 45 (17) ◽  
pp. 23203-23215 ◽  
Author(s):  
Nuengruethai Rukcharoen ◽  
Auttasit Tubtimtae ◽  
Veeramol Vailikhit ◽  
Pichanan Teesetsopon ◽  
Nareerat Kitisripanya

Sign in / Sign up

Export Citation Format

Share Document