FUS Oncofusion Protein Condensates Recruit mSWI / SNF Chromatin Remodeler via Heterotypic Interactions Between Prion‐like Domains

2021 ◽  
Author(s):  
Richoo B. Davis ◽  
Taranpreet Kaur ◽  
Mahdi Muhammad Moosa ◽  
Priya R. Banerjee

2021 ◽  
Vol 22 (9) ◽  
pp. 4960
Author(s):  
Natalia Guillén Díaz-Maroto ◽  
Gemma Garcia-Vicién ◽  
Giovanna Polcaro ◽  
María Bañuls ◽  
Nerea Albert ◽  
...  

Heterotypic interactions between newly transformed cells and normal surrounding cells define tumor’s fate in incipient carcinomas. Once homeostasis has been lost, normal resident fibroblasts become carcinoma-associated fibroblasts, conferring protumorogenic properties on these normal cells. Here we describe the IL1β-mediated interplay between cancer cells and normal colonic myofibroblasts (NCFs), which bestows differential sensitivity to cytotoxic drugs on tumor cells. We used NCFs, their conditioned media (CM), and cocultures with tumor cells to characterize the IL1β-mediated crosstalk between both cell types. We silenced IL1β in tumor cells to demonstrate that such cells do not exert an influence on NCFs inflammatory phenotype. Our results shows that IL1β is overexpressed in cocultured tumor cells. IL1β enables paracrine signaling in myofibroblasts, converting them into inflammatory-CAFs (iCAF). IL1β-stimulated-NCF-CM induces migration and differential sensitivity to oxaliplatin in colorectal tumor cells. Such chemoprotective effect has not been evidenced for TGFβ1-driven NCFs. IL1β induces the loss of a myofibroblastic phenotype in NCFs and acquisition of iCAF traits. In conclusion, IL1β-secreted by cancer cells modify surrounding normal fibroblasts to confer protumorogenic features on them, particularly tolerance to cytotoxic drugs. The use of IL1β-blocking agents might help to avoid the iCAF traits acquisition and consequently to counteract the protumorogenic actions these cells.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bagrat Grigoryan ◽  
Daniel W. Sazer ◽  
Amanda Avila ◽  
Jacob L. Albritton ◽  
Aparna Padhye ◽  
...  

AbstractAs a 3D bioprinting technique, hydrogel stereolithography has historically been limited in its ability to capture the spatial heterogeneity that permeates mammalian tissues and dictates structure–function relationships. This limitation stems directly from the difficulty of preventing unwanted material mixing when switching between different liquid bioinks. Accordingly, we present the development, characterization, and application of a multi-material stereolithography bioprinter that provides controlled material selection, yields precise regional feature alignment, and minimizes bioink mixing. Fluorescent tracers were first used to highlight the broad design freedoms afforded by this fabrication strategy, complemented by morphometric image analysis to validate architectural fidelity. To evaluate the bioactivity of printed gels, 344SQ lung adenocarcinoma cells were printed in a 3D core/shell architecture. These cells exhibited native phenotypic behavior as evidenced by apparent proliferation and formation of spherical multicellular aggregates. Cells were also printed as pre-formed multicellular aggregates, which appropriately developed invasive protrusions in response to hTGF-β1. Finally, we constructed a simplified model of intratumoral heterogeneity with two separate sub-populations of 344SQ cells, which together grew over 14 days to form a dense regional interface. Together, these studies highlight the potential of multi-material stereolithography to probe heterotypic interactions between distinct cell types in tissue-specific microenvironments.



Author(s):  
Chase M. Woodley ◽  
Alexander S. Romer ◽  
Jing Wang ◽  
Alissa D. Guarnaccia ◽  
David L. Elion ◽  
...  


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2152
Author(s):  
Robin Loesch ◽  
Linda Chenane ◽  
Sabine Colnot

Chromatin remodelers are found highly mutated in cancer including hepatocellular carcinoma. These mutations frequently occur in ARID (AT-rich Interactive Domain) genes, encoding subunits of the ATP-dependent SWI/SNF remodelers. The increasingly prevalent complexity that surrounds the functions and specificities of the highly modular BAF (BG1/BRM-associated factors) and PBAF (polybromo-associated BAF) complexes, including ARID1A/B or ARID2, is baffling. The involvement of the SWI/SNF complexes in diverse tissues and processes, and especially in the regulation of gene expression, multiplies the specific outcomes of specific gene alterations. A better understanding of the molecular consequences of specific mutations impairing chromatin remodelers is needed. In this review, we summarize what we know about the tumor-modulating properties of ARID2 in hepatocellular carcinoma.



2011 ◽  
Vol 23 (3) ◽  
pp. 1047-1060 ◽  
Author(s):  
Ernst Aichinger ◽  
Corina B.R. Villar ◽  
Riccardo Di Mambro ◽  
Sabrina Sabatini ◽  
Claudia Köhler


Open Biology ◽  
2012 ◽  
Vol 2 (7) ◽  
pp. 120099 ◽  
Author(s):  
Owen R. Davies ◽  
Joseph D. Maman ◽  
Luca Pellegrini

The successful completion of meiosis is essential for all sexually reproducing organisms. The synaptonemal complex (SC) is a large proteinaceous structure that holds together homologous chromosomes during meiosis, providing the structural framework for meiotic recombination and crossover formation. Errors in SC formation are associated with infertility, recurrent miscarriage and aneuploidy. The current lack of molecular information about the dynamic process of SC assembly severely restricts our understanding of its function in meiosis. Here, we provide the first biochemical and structural analysis of an SC protein component and propose a structural basis for its function in SC assembly. We show that human SC proteins SYCE2 and TEX12 form a highly stable, constitutive complex, and define the regions responsible for their homotypic and heterotypic interactions. Biophysical analysis reveals that the SYCE2–TEX12 complex is an equimolar hetero-octamer, formed from the association of an SYCE2 tetramer and two TEX12 dimers. Electron microscopy shows that biochemically reconstituted SYCE2–TEX12 complexes assemble spontaneously into filamentous structures that resemble the known physical features of the SC central element (CE). Our findings can be combined with existing biological data in a model of chromosome synapsis driven by growth of SYCE2–TEX12 higher-order structures within the CE of the SC.



Author(s):  
Hai-xia Yan ◽  
Yan-jun Zhang ◽  
Yuan Zhang ◽  
Xue Ren ◽  
Yu-fei Shen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document