Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentumMill.) production in China

2018 ◽  
Vol 74 (9) ◽  
pp. 2146-2155 ◽  
Author(s):  
Zongjie Ren ◽  
Yuan Li ◽  
Wensheng Fang ◽  
Dongdong Yan ◽  
Bin Huang ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476e-476
Author(s):  
Craig S. Charron ◽  
Catherine O. Chardonnet ◽  
Carl E. Sams

The U.S. Clean Air Act bans the use of methyl bromide after 2001. Consequently, the development of alternative methods for control of soilborne pathogens is imperative. One alternative is to exploit the pesticidal properties of macerated tissues of Brassica spp. This study tested the potential of several Brassica spp. for control of fungal pathogens. Pythium ultimum Trow or Rhizoctonia solani Kühn plugs on potato-dextrose agar on petri dishes were sealed in 500-ml glass jars (at 22 °C) containing macerated leaves (10 g) from one of six Brassica spp. Radial growth was measured 24, 48, and 72 h after inoculation. Indian mustard (B. juncea) was the most suppressive, followed by `Florida Broadleaf' mustard (B. juncea). Volatile compounds in the jars were sampled with a solid-phase microextraction device (SPME) and identified by gas chromatography-mass spectrometry (GC-MS). Allyl isothiocyanate (AITC) comprised over 90% of the total volatiles measured from Indian mustard and `Florida Broadleaf' mustard. Isothiocyanates were detected in jars with all plants except broccoli. (Z)-3-hexenyl acetate was emitted by all plants and was the predominant volatile of `Premium Crop' broccoli (B. oleracea L. var. italica), `Michihili Jade Pagoda' Chinese cabbage (B. pekinensis), `Charmant' cabbage (B. oleracea L. var. capitata), and `Blue Scotch Curled' kale (B. oleracea L. var. viridis). To assess the influence of AITC on radial growth of P. ultimum and R. solani, AITC was added to jars to give headspace concentrations of 0.10, 0.20, and 0.30 mg·L–1 (mass of AITC per volume of headspace). Growth of both fungi was inhibited by 0.10 mg·L–1 AITC. 0.20 mg·L–1 AITC was fungicidal to P. ultimum although the highest AITC level tested (0.30 mg·L–1) did not terminate R. solani growth. These results indicate that residues from some Brassica spp. may be a viable part of a soilborne pest control strategy.



2014 ◽  
Vol 81 (1) ◽  
pp. 432-440 ◽  
Author(s):  
T. Sotelo ◽  
M. Lema ◽  
P. Soengas ◽  
M. E. Cartea ◽  
P. Velasco

ABSTRACTGlucosinolates (GSLs) are secondary metabolites found inBrassicavegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about theirin vitrobiocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enrichedBrassicacrops on suppressingin vitrogrowth of two bacterial (Xanthomonas campestrispv. campestris andPseudomonas syringaepv. maculicola) and two fungal (AlternariabrassicaeandSclerotiniascletoriorum)Brassicapathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of differentBrassicaspecies, have potential to inhibit pathogen growth and offer new opportunities to study the use ofBrassicacrops in biofumigation for the control of multiple diseases.



Author(s):  
Clara Suprani Marques ◽  
Marali Vilela Dias ◽  
Nilda de Fátima Ferreira Soares ◽  
Soraia Vilela Borges ◽  
Isadora Rebouças Nolasco Oliveira ◽  
...  


LWT ◽  
2021 ◽  
Vol 145 ◽  
pp. 111263
Author(s):  
Hajime Takahashi ◽  
Ayaka Nakamura ◽  
Nanami Fujino ◽  
Yuzuru Sawaguchi ◽  
Miki Sato ◽  
...  


LWT ◽  
2021 ◽  
Vol 143 ◽  
pp. 111087
Author(s):  
Rosana Colussi ◽  
Wyller Max Ferreira da Silva ◽  
Barbara Biduski ◽  
Shanise Lisie Mello El Halal ◽  
Elessandra da Rosa Zavareze ◽  
...  


2020 ◽  
Vol 16 ◽  
pp. 174480692092542 ◽  
Author(s):  
Seung Min Shin ◽  
Brandon Itson-Zoske ◽  
Yongsong Cai ◽  
Chensheng Qiu ◽  
Bin Pan ◽  
...  

Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund’s adjuvant show greater AITC-evoked elevation of [Ca2+]i and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.



2012 ◽  
Vol 53 ◽  
pp. S190-S191
Author(s):  
A.E. Wagner⁎ ◽  
G. Rimbach


2018 ◽  
Vol 53 (8) ◽  
pp. 1983-1991 ◽  
Author(s):  
Haiyan Gao ◽  
Weijie Wu ◽  
Hangjun Chen ◽  
Yanhong Qin ◽  
Xiangjun Fang ◽  
...  


2016 ◽  
Vol 569-570 ◽  
pp. 1-8 ◽  
Author(s):  
Jiaolong Qin ◽  
Yuxiao Cheng ◽  
Mingxing Sun ◽  
Lili Yan ◽  
Guoqing Shen


2021 ◽  
Vol 62 (3) ◽  
pp. 73-78
Author(s):  
Naoko Masumoto ◽  
Yuzo Nishizaki ◽  
Kaori Nakajima ◽  
Naoki Sugimoto ◽  
Kyoko Sato
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document