scholarly journals In VitroActivity of Glucosinolates and Their Degradation Products against Brassica-Pathogenic Bacteria and Fungi

2014 ◽  
Vol 81 (1) ◽  
pp. 432-440 ◽  
Author(s):  
T. Sotelo ◽  
M. Lema ◽  
P. Soengas ◽  
M. E. Cartea ◽  
P. Velasco

ABSTRACTGlucosinolates (GSLs) are secondary metabolites found inBrassicavegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about theirin vitrobiocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enrichedBrassicacrops on suppressingin vitrogrowth of two bacterial (Xanthomonas campestrispv. campestris andPseudomonas syringaepv. maculicola) and two fungal (AlternariabrassicaeandSclerotiniascletoriorum)Brassicapathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of differentBrassicaspecies, have potential to inhibit pathogen growth and offer new opportunities to study the use ofBrassicacrops in biofumigation for the control of multiple diseases.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12097
Author(s):  
Yaowanoot Promnuan ◽  
Saran Promsai ◽  
Wasu Pathom-aree ◽  
Sujinan Meelai

This study aimed to investigate cultivable actinomycetes associated with rare honey bee species in Thailand and their antagonistic activity against plant pathogenic bacteria. Actinomycetes were selectively isolated from the black dwarf honey bee (Apis andreniformis). A total of 64 actinomycete isolates were obtained with Streptomyces as the predominant genus (84.4%) followed by Micromonospora (7.8%), Nonomuraea (4.7%) and Actinomadura (3.1%). All isolates were screened for antimicrobial activity against Xanthomonas campestris pv. campestris, Pectobacterium carotovorum and Pseudomonas syringae pv. sesame. Three isolates inhibited the growth of X. campestris pv. campestris during in vitro screening. The crude extracts of two isolates (ASC3-2 and ASC5-7P) had a minimum inhibitory concentration (MIC) of 128 mg L−1against X. campestris pv. campestris. For isolate ACZ2-27, its crude extract showed stronger inhibitory effect with a lower MIC value of 64 mg L−1 against X. campestris pv. campestris. These three active isolates were identified as members of the genus Streptomyces based on their 16S rRNA gene sequences. Phylogenetic analysis based on the maximum likelihood algorithm showed that isolate ACZ2-27, ASC3-2 and ASC5-7P were closely related to Streptomyces misionensis NBRC 13063T (99.71%), Streptomyces cacaoi subsp. cacaoi NBRC 12748T (100%) and Streptomyces puniceus NBRC 12811T (100%), respectively. In addition, representative isolates from non-Streptomyces groups were identified by 16S rRNA gene sequence analysis. High similarities were found with members of the genera Actinomadura, Micromonospora and Nonomuraea. Our study provides evidence of actinomycetes associated with the black dwarf honey bee including members of rare genera. Antimicrobial potential of these insect associated Streptomyces was also demonstrated especially the antibacterial activity against phytopathogenic bacteria.


2013 ◽  
Vol 76 (4) ◽  
pp. 719-722 ◽  
Author(s):  
MICHAEL MAHOVIC ◽  
GANYU GU ◽  
STEVEN RIDEOUT

Overhead spray applications of in-field tomato treatments dissolved in aqueous solutions have specific pest targets (fungal, bacterial, insect, or other). Any organism present in the solution or on treated plant surfaces that is not a specific target of the application is unlikely inactivated and can instead be spread through the phyllosphere. In this laboratory study, commercially labeled pesticides (including Actigard 50WG, Bravo Weather Stik 6F, Cabrio 20EG, Kasumin, Kocide 3000 46WG, Oxidate 27L, Penncozeb 75DF, ProPhyt 54.5L, Stimplex 100L, Firewall, 22.4WP, and Tanos 50DF) in common use in commercial tomato production fields of the Eastern Shore of Virginia were investigated for activity against in vitro bacterial contamination of pesticide application waters. Pesticides of interest were tank mixed individually with one of the plant pathogens Ralstonia solanacearum, Xanthomonas campestris pv. vesicatoria, Pseudomonas syringae pv. tomato, Erwinia carotovora subsp. carotovora, or one of two serovars (Newport and Montevideo) of the human pathogen Salmonella enterica to assess reduction values during the average time between mixing and initial application. Observations suggested that while some treatments had a noticeable effect on population levels, only the oxidizer, peroxyacetic acid, showed significant and consistent levels of suppression against all bacteria investigated, at levels that could have practical implications.


2006 ◽  
Vol 57 (5) ◽  
pp. 511 ◽  
Author(s):  
Leeto Nteso ◽  
Johan C. Pretorius

The antimicrobial properties of crude methanol extracts of above- and below-soil parts of Tulbaghia violacea were quantified by means of an agar diffusion method against 6 plant pathogenic bacteria and 7 fungi. The growth of 3 out of the 6 bacteria, Clavibacter michiganensis, Ralstonia solanacearum, and Xanthomonas campestris, was significantly inhibited by crude extracts of both below-soil and aerial parts of T. violacea, whereas the growth of Pseudomonas syringae, Erwinia carotovora, and Agrobacterium tumefaciens was unaffectedl. Compared with the standard fungicide, both the aerial and below-soil extracts of T. violacea significantly inhibited the mycelial growth of 6 of the 7 test fungi, Botrytis cinerea, Sclerotium rolfsii, Rhizoctonia solani, Mycosphaerella pinodes, Botryosphaeria dothidea, and P. ultimum, whereas only the below-soil extract inhibited the mycelial growth of Fusarium oxysporum significantly. The broad-spectrum antifungal activity shown by the crude T. violaceae extracts supplied a rationale for a further investigation into the in vivo activity of the extracts under glasshouse and field conditions.


1988 ◽  
Vol 34 (2) ◽  
pp. 196-199 ◽  
Author(s):  
W. C. Lim ◽  
J. L. Lockwood

The motile plant pathogenic bacteria Erwinia carotovora pv. carotovora, Pseudomonas syringae pv. phaseolicola, and Xanthomonas campestris pv. campestris were strongly attracted to conidia of Bipolaris sorokiniana, B. victoriae, and to sclerotia of Macrophomina phaseolina and their exudates in vitro and in soil, but not to phosphate buffer or buffer–soil mixtures. Bacteria accumulated radioactivity within 1 h after being placed in exudates from 14C-labelled conidia of B. sorokiniana. After 5 h, radioactivity of the 14C-labelled exudate was reduced to 29–54% of that in the original medium. Exudates from fungal propagules may act as attractants and substrates for motile plant pathogenic bacteria in soil.


2018 ◽  
Vol 33 (3-4) ◽  
pp. 185-195 ◽  
Author(s):  
Tatjana Popovic ◽  
Zoran Milicevic ◽  
Violeta Oro ◽  
Igor Kostic ◽  
Vesela Radovic ◽  
...  

Numerous scientific research studies all over the world have addressed the problem of agriculture in the 21st century as being particularly sensitive to climate change, which has caused phytopathogenic bacteria to spread. Therefore, there is a clear and urgent need to contain this kind of risk in agricultural production (both conventional and organic farming). The objective of this study was to determine the antibacterial activity of 30 essential oils (EOs) against three harmful plant pathogenic bacteria of agricultural importance, Erwinia amylovora, Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. syringae. The study included in vitro testing, using an agar-diffusion assay. The EOs of Ceylon cinnamon (leaf and bark), oregano, clove bud and palmarosa revealed antibacterial activity against the test bacteria, and the maximum mean inhibition zone diameters of 35 mm was found against E. amylovora and X. campestris pv. campestris (highly sensitive reaction), while it was smaller in the case of P. syringae pv. syringae, from 18.25-26.25 mm (sensitive to very sensitive reaction). Maximum diameter of the zone of inhibition (35 mm) was obtained using basil and peppermint against E. amylovora, and rosemary, blue gum and camphor tree against X. campestris pv. campestris. Not a single EO inhibited P. syringae pv. syringae with the resulting total diameter zone of 35 mm, and this test bacteria was resultingly classified as the least susceptible bacterium of the three tested. EOs of lemongrass, aniseed, ylang ylang, silver fir, lemon, dwarf mountain pine, bay laurel and scots pine caused sensitive reaction of the tested bacteria. Peppermint, black cumin, Indian frankincense, bergamot orange, common juniper, bitter orange and neem produced variable reactions from total to weakly or no inhibition at all. Weakly activity was found in niaouli and Atlas cedar. Eastern red cedar, patchouli, Indian sandalwood and ginger caused no reaction of any of the test bacteria. The results offer a basis for further work based on in vivo testing for the purpose of developing ?natural pesticides? for control of phytopathogenic bacteria, thus giving a significant contribution to reducing yield losses in agriculture and sustainable development.


2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


Author(s):  
Shubhaisi Das ◽  
Sunanda Burman ◽  
Goutam Chandra

Background: The only remedy for up surging problem of antibiotic resistance is the discovery of antibacterial agents of natural origin. Objective: The present study was aimed at finding antibacterial potential of crude and solvent extracts of mature leaves of Plumeria pudica. Methods: Antibacterial activity of three different solvent extracts were evaluated in four human and four fish pathogenic bacteria by measuring the zone of inhibition and determining Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values. Standard antibiotics were used as positive control. Preliminary phytochemical screening of most effective extract i.e., ethyl acetate extract, Fourier Transform Infra Red analysis and GC-MS analysis of the Thin Layer Chromatographic (TLC) fraction of ethyl acetate extract were done meticulously. All experiments were done thrice and analyzed statistically. Results: Crude leaf extracts and solvent extracts caused good inhibition of bacterial growth in all selected bacteria. Ethyl acetate extract showed highest inhibition zones in all tested strains with maximum inhibition (19.50±0.29 mm) in Escherichia coli (MTCC 739). MBC/MIC of the extracts indicated that all three solvent extracts were bactericidal. Preliminary phytochemical tests revealed the presence of tannins, steroids and alkaloids and FT-IR analysis revealed presence of many functional groups namely alcoholic, amide, amine salt and aldehyde groups. From the GC-MS analysis of TLC fraction of ethyl acetate extract five different bioactive compounds e.g., 2,4-ditert –butylphenyl 5-hydroxypentanoate, Oxalic acid; allyl nonyl ester, 7,9-Ditert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, Dibutyl phthalate and 2,3,5,8-tetramethyl-decane were identified. Conclusion: Leaf extracts of P. pudica contain bioactive compounds that can be used as broad spectrum bactericidal agent.


2015 ◽  
Vol 81 (17) ◽  
pp. 5880-5888 ◽  
Author(s):  
C. De Maesschalck ◽  
V. Eeckhaut ◽  
L. Maertens ◽  
L. De Lange ◽  
L. Marchal ◽  
...  

ABSTRACTIn broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon andClostridiumcluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level,Lactobacillus crispatusandAnaerostipes butyraticuswere significantly increased in abundance in the colon and cecum, respectively.In vitrofermentation of XOS revealed cross-feeding betweenL. crispatusandA. butyraticus. Lactate, produced byL. crispatusduring XOS fermentation, was utilized by the butyrate-producingAnaerostipesspecies. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.


2017 ◽  
Vol 55 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
Xavier Argemi ◽  
Yves Hansmann ◽  
Philippe Riegel ◽  
Gilles Prévost

ABSTRACTThe implication of coagulase-negative staphylococci in human diseases is a major issue, particularly in hospital settings wherein these species often act as opportunistic pathogens. In addition, some coagulase-negative staphylococci such asS. lugdunensishave emerged as pathogenic bacteria, implicated in severe infections, particularly, osteoarticular infections, foreign-body-associated infections, bacteremia, and endocarditis.In vitrostudies have shown the presence of several putative virulence factors such as adhesion factors, biofilm production, and proteolytic factors that might explain clinical manifestations. Taken together, the clinical and microbiological data might change the way clinicians and microbiologists look atS. lugdunensisin clinical samples.


2020 ◽  
Vol 110 (5) ◽  
pp. 989-998
Author(s):  
Cláudio M. Vrisman ◽  
Loïc Deblais ◽  
Yosra A. Helmy ◽  
Reed Johnson ◽  
Gireesh Rajashekara ◽  
...  

Plant pathogenic bacteria in the genus Erwinia cause economically important diseases, including bacterial wilt of cucurbits caused by Erwinia tracheiphila. Conventional bactericides are insufficient to control this disease. Using high-throughput screening, 464 small molecules (SMs) with either cidal or static activity at 100 µM against a cucumber strain of E. tracheiphila were identified. Among them, 20 SMs (SM1 to SM20), composed of nine distinct chemical moiety structures, were cidal to multiple E. tracheiphila strains at 100 µM. These lead SMs had low toxicity to human cells and honey bees at 100 µM. No phytotoxicity was observed on melon plants at 100 µM, except when SM12 was either mixed with Silwet L-77 and foliar sprayed or when delivered through the roots. Lead SMs did not inhibit the growth of beneficial Pseudomonas and Enterobacter species but inhibited the growth of Bacillus species. Nineteen SMs were cidal to Xanthomonas cucurbitae and showed >50% growth inhibition against Pseudomonas syringae pv. lachrymans. In addition, 19 SMs were cidal or static against Erwinia amylovora in vitro. Five SMs demonstrated potential to suppress E. tracheiphila when foliar sprayed on melon plants at 2× the minimum bactericidal concentration. Thirteen SMs reduced Et load in melon plants when delivered via roots. Temperature and light did not affect the activity of SMs. In vitro cidal activity was observed after 3 to 10 h of exposure to these five SMs. Here, we report 19 SMs that provide chemical scaffolds for future development of bactericides against plant pathogenic bacterial species.


Sign in / Sign up

Export Citation Format

Share Document